Favard length and quantitative rectifiability

Damian Dąbrowski

Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .

Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .

Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .

Analytic capacity

In 1947 Ahlfors characterized removability in terms of analytic capacity:

E is removable
$$\Leftrightarrow$$
 $\gamma(E) = 0$,

where

$$\gamma(E) = \sup\{|f'(\infty)| : f : \mathbb{C} \setminus E \to \mathbb{C} \text{ analytic}, \|f\|_{\infty} \le 1\},$$
$$f'(\infty) = \lim_{z \to \infty} z(f(z) - f(\infty)).$$

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If $dim_H(E) > 1$, then $\gamma(E) > 0$.

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If $dim_H(E) > 1$, then $\gamma(E) > 0$.
- If E is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If $dim_H(E) > 1$, then $\gamma(E) > 0$.
- If E is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Question

$$\gamma(E) = 0 \Leftrightarrow \mathcal{H}^1(E) = 0$$
?

Painlevé problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Classical:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If $\dim_H(E) > 1$, then $\gamma(E) > 0$.
- If E is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Question

$$\gamma(E) = 0 \Leftrightarrow \mathcal{H}^1(E) = 0$$
? No!

There are sets $E \subset \mathbb{C}$ with $\gamma(E) = 0$ and $0 < \mathcal{H}^1(E) < \infty$. (Vitushkin 1959, Garnett, Ivanov 1970s)

Vitushkin's conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

$$\mathcal{H}^1(\pi_{\theta}(E)) = 0$$

for a.e. direction $\theta \in [0, \pi]$.

Vitushkin's conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

$$\mathcal{H}^1(\pi_{\theta}(E)) = 0$$

for a.e. direction $\theta \in [0, \pi]$.

Define Favard length of E as

$$\mathsf{Fav}(E) = \int_0^\pi \mathcal{H}^1(\pi_\theta(E)) \ d\theta.$$

Vitushkin's conjecture (1967)

$$\gamma(E) = 0 \Leftrightarrow \operatorname{Fav}(E) = 0$$

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$\gamma(E) = 0 \Leftrightarrow Fav(E) = 0$$

• In the case $\mathcal{H}^1(E) < \infty$ Vitushkin's conjecture is **true**! (Calderón '77, David '98)

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$\gamma(E) = 0 \Leftrightarrow Fav(E) = 0$$

- In the case $\mathcal{H}^1(E) < \infty$ Vitushkin's conjecture is **true**! (Calderón '77, David '98)
- In the case $\mathcal{H}^1(E) = \infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88):

$$\mathsf{Fav}(E) = 0 \quad \Rightarrow \quad \gamma(E) = 0.$$

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$\gamma(E) = 0 \Leftrightarrow \operatorname{Fav}(E) = 0$$

- In the case $\mathcal{H}^1(E) < \infty$ Vitushkin's conjecture is **true**! (Calderón '77, David '98)
- In the case $\mathcal{H}^1(E) = \infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88):

$$Fav(E) = 0 \implies \gamma(E) = 0.$$

· What about

$$\mathsf{Fav}(E) = 0 \quad \Leftarrow \quad \gamma(E) = 0?$$

Open problems

Problem 1 (qualitative)

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$
?

Open for sets $E \subset \mathbb{C}$ with $\dim_H(E) = 1$ and non- σ -finite \mathcal{H}^1 -measure.

Open problems

Problem 1 (qualitative)

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$
?

Open for sets $E \subset \mathbb{C}$ with $\dim_H(E) = 1$ and non- σ -finite \mathcal{H}^1 -measure.

Problem 2 (quantitative)

$$\gamma(E) \gtrsim \mathsf{Fav}(E)$$
? $\gamma(E) \gtrsim_{\mathsf{Fav}(E)} 1$?

Open even for sets with finite length.

length?

What happens for sets with finite

Geometric ingredient:

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$,

Geometric ingredient:

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$,

Geometric ingredient:

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$.

Geometric ingredient:

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$.

Analytic ingredient:

Theorem (Calderón 1977)

If Γ is a rectifiable curve and $F \subset \Gamma$ satisfies $\mathcal{H}^1(F) > 0$, then

$$\gamma(F) > 0.$$

Vitushkin's conjecture when $\mathcal{H}^1(E) < \infty$

Goal

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$

If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$

$$\gamma(E) \geq \gamma(E \cap \Gamma)$$

Vitushkin's conjecture when $\mathcal{H}^1(E) < \infty$

Goal

$$\mathsf{Fav}(E) > 0 \quad \Rightarrow \quad \gamma(E) > 0$$

If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$

$$\gamma(E) \ge \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on)}}{>} 0.$$

Vitushkin's conjecture when $\mathcal{H}^1(E) < \infty$

Goal

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$

If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$

$$\gamma(E) \ge \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on)}}{>} 0.$$

- · Why does it only work for sets with finite length?
- · Why does it give no quantitative estimates?

First problem

The Besicovitch projection theorem fails for sets with infinite length!

 $K = C_{1/3} \times C_{1/3}$ satisfies $Fav(K) \gtrsim 1$ and $\mathcal{H}^1(K \cap \Gamma) = 0$ for every rectifiable curve.

Recall: if $0 < \mathcal{H}^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then $\exists \, \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and

$$\gamma(E) \geq \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on)}}{>} 0.$$

Recall: if $0 < \mathcal{H}^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and

$$\gamma(E) \ge \gamma(E \cap \Gamma) > 0.$$

There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an L-Lipschitz graph, then

$$\gamma(E \cap \Gamma) \gtrsim_{L} \mathcal{H}^{1}(E \cap \Gamma)...$$

Recall: if $0 < \mathcal{H}^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and

$$\gamma(E) \ge \gamma(E \cap \Gamma) > 0.$$

There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an L-Lipschitz graph, then

$$\gamma(E \cap \Gamma) \gtrsim_{L} \mathcal{H}^{1}(E \cap \Gamma)...$$

...but the Besicovitch projection theorem gives no quantitative bound neither on $\mathcal{H}^1(E \cap \Gamma)$, nor on Lip(Γ)!

Recall: if $0 < \mathcal{H}^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and

$$\gamma(E) \ge \gamma(E \cap \Gamma)^{\text{(Calder\'on)}} > 0.$$

There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an L-Lipschitz graph, then

$$\gamma(E \cap \Gamma) \gtrsim_L \mathcal{H}^1(E \cap \Gamma)...$$

...but the Besicovitch projection theorem gives no quantitative bound neither on $\mathcal{H}^1(E \cap \Gamma)$, nor on Lip(Γ)!

Favard length problem

Can we quantify the dependence of $Lip(\Gamma)$ and $\mathcal{H}^1(E \cap \Gamma)$ on Fav(E)?

Favard length problem

Naive conjecture...

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with

$$\mathcal{H}^1(E\cap\Gamma)>0.$$

Naive conjecture

Let $E \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $Fav(E) \gtrsim 1$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $Lip(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim 1.$$

... is false

For any $\varepsilon > 0$ there exists a set $E = E_{\varepsilon} \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $\mathsf{Fav}(E) \gtrsim 1$ such that for all L-Lipschitz graphs Γ

E consists of ε^{-2} uniformly distributed circles of radius ε^2 .

Reasonable conjecture

We say that $E \subset \mathbb{R}^2$ is Ahlfors regular if for every $x \in E$ and 0 < r < diam(E)

$$C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$$

Reasonable conjecture

We say that $E \subset \mathbb{R}^2$ is Ahlfors regular if for every $x \in E$ and 0 < r < diam(E)

$$C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$$

Reasonable conjecture

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Variations on this conjecture appearing since the 90s in the works of David and Semmes, Mattila, Peres and Solomyak.

big projections

big projections \Rightarrow many lines with few intersections

big projections \Rightarrow many lines with few intersections

big projections \Rightarrow many lines with few intersections

 \Rightarrow cones with no intersections

big projections \Rightarrow many lines with few intersections

 \Rightarrow cones with no intersections \Rightarrow subset of a Lipschitz graph

big projections \Rightarrow many lines with few intersections

 \Rightarrow cones with no intersections \Rightarrow subset of a Lipschitz graph

Previous work

Reasonable conjecture

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Progress on the conjecture consisted of replacing "Fav(E) $\gtrsim \mathcal{H}^{1}(E)$ " by:

- · David-Semmes '93: big projection + WGL
- Martikainen-Orponen '18: projections in L^2
- · Orponen '21: plenty of big projections
- **D.** '22: projections in L^{∞}

New result: the conjecture is true!

Theorem (D. '24)

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

New result: the conjecture is true!

Theorem (D. '24)

Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Corollaries:

- · a positive answer to a 1993 question of David and Semmes,
- · a positive answer to a 2002 question of Peres and Solomyak,
- · progress on Vitushkin's conjecture.

Back to Vitushkin

Estimates for Ahlfors regular sets

Quantitative Vitushkin's conjecture

If $E \subset \mathbb{R}^2$ is compact and $\mathsf{Fav}(E) \geq \kappa \, \mathsf{diam}(E)$, do we have

$$\gamma(E)\gtrsim_{\kappa} \operatorname{diam}(E)$$
?

Partial results in Chang-Tolsa '20, Tasso '22, D.-Villa '22.

Estimates for Ahlfors regular sets

Quantitative Vitushkin's conjecture

If $E \subset \mathbb{R}^2$ is compact and $Fav(E) \geq \kappa \operatorname{diam}(E)$, do we have

$$\gamma(E)\gtrsim_{\kappa} \operatorname{diam}(E)$$
?

Partial results in Chang-Tolsa '20, Tasso '22, D.-Villa '22.

Corollary (D. '24)

If $E \subset \mathbb{R}^2$ is Ahlfors regular and $Fav(E) \geq \kappa \operatorname{diam}(E)$, then

$$\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E)$$
.

We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E)

$$\mathsf{Fav}(E\cap B(x,r))\geq \kappa r.$$

We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E)

$$\operatorname{Fav}(E \cap B(x,r)) \geq \kappa r.$$

$$\downarrow \varepsilon^2$$

We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E)

A set violating ULFL

We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E)

$$\mathsf{Fav}(E\cap B(x,r))\geq \kappa r.$$

Corollary (D. '24 + D.-Villa '22)

If $E \subset \mathbb{R}^2$ has ULFL, then

$$\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E)$$
.

Proof of the main result

Goal

Theorem (D. '24)

Let $E \subset B(0,1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Theorem (D. '24)

Let $E \subset B(0,1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$

Key tool: **conical energies** introduced in **[Martikainen-Orponen '18]** and **[Chang-Tolsa '20]**.

For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \text{span}(\theta)$.

For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \text{span}(\theta)$.

$$X(\mathsf{x},\mathsf{G}) \coloneqq \bigcup_{\theta \in \mathsf{G}} \ell_{\mathsf{x},\theta}.$$

For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \operatorname{span}(\theta)$.

For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \text{span}(\theta)$.

For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \text{span}(\theta)$.

Given $G \subset \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set

$$X(x,G) := \bigcup_{\theta \in G} \ell_{x,\theta}.$$

Given 0 < r < R we define the truncated cones

$$X(x,G,r) := X(x,G) \cap B(x,r)$$

and

$$X(x,G,r,R) := X(x,G,R) \setminus B(x,r).$$

Conical energies

Given $x \in \mathbb{R}^2$, $G \subset \mathbb{S}^1$, and a measure μ we define the **conical energy of** μ at x as

$$\mathcal{E}_{\mu}(x,G) = \int_{0}^{\infty} \frac{\mu(X(x,G,r))}{r} \frac{dr}{r}$$

Conical energies

Given $x \in \mathbb{R}^2$, $G \subset \mathbb{S}^1$, and a measure μ we define the conical energy of μ at x as

$$\mathcal{E}_{\mu}(x,G) = \int_{0}^{\infty} \frac{\mu(X(x,G,r))}{r} \, \frac{dr}{r} \sim \sum_{k \in \mathbb{Z}} \frac{\mu(X(x,G,2^{-k},2^{-k+1}))}{2^{-k}}.$$

Finding Lipschitz graphs

Note: if $\mathcal{E}_{\mu}(x,J)=0$ for μ -a.e. x with a fixed arc $J\subset\mathbb{S}^1$, then

$$\mu(X(x,J)) = 0$$
 for μ -a.e. x ,

and so μ is concentrated on a Lipschitz graph.

Finding Lipschitz graphs

Note: if $\mathcal{E}_{\mu}(x,J) = 0$ for μ -a.e. x with a fixed arc $J \subset \mathbb{S}^1$, then

$$\mu(X(x,J)) = 0$$
 for μ -a.e. x ,

and so μ is concentrated on a Lipschitz graph.

Theorem (Martikainen-Orponen '18)

Assume that $E \subset B(0,1)$ is Ahlfors regular, $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$, and there exists an arc $J \subset \mathbb{S}^1$ with $\mathcal{H}^1(J) \gtrsim 1$ such that for $\mu = \mathcal{H}^1|_F$

$$\mathcal{E}_{\mu}(x,J)\lesssim 1.$$

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $Lip(\Gamma) \lesssim 1$ and $\mathcal{H}^1(F \cap \Gamma) \gtrsim 1$.

From big projections to conical energies

big projections ⇒ many lines with few intersections ⇒ cones with no intersections ⇒ subset of a Lipschitz graph

From big projections to conical energies

big projections ⇒ many lines with few intersections
⇒ bounded conical energies [MO18] subset of a Lipschitz graph

Lemma

Let $E \subset B(0,1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$.

Lemma

Let $E \subset B(0,1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$

Lemma

Let $E \subset B(0,1)$ be an Ahlfors regular set with $\mathsf{Fav}(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$ such that for every $x \in F$ there is $G(x) \subset \mathbb{S}^1$ with $\mathcal{H}^1(G(x)) \gtrsim 1$ and $\mathcal{E}_{\mu}(x,G(x)) \lesssim 1$.

Lemma

Let $E \subset B(0,1)$ be an Ahlfors regular set with $\mathsf{Fav}(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$ such that for every $x \in F$ there is $G(x) \subset \mathbb{S}^1$ with $\mathcal{H}^1(G(x)) \gtrsim 1$ and $\mathcal{E}_{\mu}(x,G(x)) \lesssim 1$.

This is close to [MO18], but there are two problems:

- $G(x) \subset \mathbb{S}^1$ might not be an arc,
- G(x) depends on the point x.

[MO18] requires that G(x) = J for some fixed arc $J \subset \mathbb{S}^1$.

Good directions propagate

Good directions propagate

$$\int_{F} \mathcal{E}_{\mu}(x, G_{*}(x)) d\mu(x) \lesssim \int_{F} \mathcal{E}_{\mu}(x, G(x)) d\mu(x) \lesssim \mu(F).$$

Good directions propagate

$$\int_F \mathcal{E}_{\mu}(x,J) \, d\mu(x) \lesssim \int_F \mathcal{E}_{\mu}(x,G_*(x)) \, d\mu(x) \lesssim \int_F \mathcal{E}_{\mu}(x,G(x)) \, d\mu(x) \lesssim \mu(F).$$

Good directions propagate

$$\int_{F} \mathcal{E}_{\mu}(x,J) \, d\mu(x) \lesssim \int_{F} \mathcal{E}_{\mu}(x,G_{*}(x)) \, d\mu(x) \lesssim \int_{F} \mathcal{E}_{\mu}(x,G(x)) \, d\mu(x) \lesssim \mu(F).$$

Proof of the main result:

Lemma + Propagation + [MO18] = big piece of a Lipschitz graph.

Proposition

Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments.

Proposition

Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. Assume that there is an arc $J \subset \mathbb{S}^1$ "parallel" to the segments such that

$$E \cap X(x,J) = \{x\}$$
 for $x \in E$.

Proposition

Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. Assume that there is an arc $J \subset \mathbb{S}^1$ "parallel" to the segments such that

$$E \cap X(x, J) = \{x\}$$
 for $x \in E$.

Then,

$$\int \mathcal{E}_{\mu}(\mathsf{x}, \mathsf{3J}) \, d\mu(\mathsf{x}) \lesssim \mathcal{H}^{1}(\mathsf{J})\mu(\mathsf{E}).$$

Proposition

Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. Assume that there is an arc $J \subset \mathbb{S}^1$ "parallel" to the segments such that

$$E \cap X(x,J) = \{x\}$$
 for $x \in E$.

Then,

$$\int \mathcal{E}_{\mu}(x, 3J) d\mu(x) \lesssim \mathcal{H}^{1}(J)\mu(E).$$

$$\begin{split} \mathcal{E}_{\mu}(x,3J) &= \mathcal{E}_{\mu}(x,3J \setminus J) \sim \sum_{k \in \mathbb{Z}} \frac{\mu(X(x,3J \setminus J,2^{-k},2^{-k+1}))}{2^{-k}} \\ &= \sum_{k \in \text{Bad}(x)} \frac{\mu(X(x,3J \setminus J,2^{-k},2^{-k+1}))}{2^{-k}} \sim \mathcal{H}^{1}(J) \cdot \# \text{Bad}(x). \end{split}$$

If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$
 and $\pi(x) \in 5I$.

If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$
 and $\pi(x) \in 5I$.

If $k \in \text{Bad}(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$
 and $\pi(x) \in 5I$.

$$\int_{E} \mathcal{E}_{\mu}(x,3J) d\mu(x) \sim \mathcal{H}^{1}(J) \int_{E} \# \text{Bad}(x) d\mu(x)$$

If $k \in \text{Bad}(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$
 and $\pi(x) \in 5I$.

$$\int_{E} \mathcal{E}_{\mu}(x,3J) d\mu(x) \sim \mathcal{H}^{1}(J) \int_{E} \# \text{Bad}(x) d\mu(x)$$
$$= \mathcal{H}^{1}(J) \sum_{k \geq 0} \mu(\{x \in E : k \in \text{Bad}(x)\})$$

If $k \in \text{Bad}(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$
 and $\pi(x) \in 5I$.

$$\int_{E} \mathcal{E}_{\mu}(x,3J) d\mu(x) \sim \mathcal{H}^{1}(J) \int_{E} \# \text{Bad}(x) d\mu(x)$$

$$= \mathcal{H}^{1}(J) \sum_{k \geq 0} \mu(\{x \in E : k \in \text{Bad}(x)\})$$

$$\stackrel{\text{KGL}}{\lesssim} \mathcal{H}^{1}(J) \sum_{k \geq 0} \sum_{\substack{l \in \text{Gap}, \\ \mathcal{H}^{1}(I) \sim \mathcal{H}^{1}(J) 2^{-k}}} \mu(\pi^{-1}(5I))$$

If $k \in \text{Bad}(x)$, then there exists a "gap" I in $\pi(E)$ such that

$$\mathcal{H}^1(I) \sim \mathcal{H}^1(I) \cdot 2^{-k}$$
 and $\pi(x) \in 5I$.

$$\begin{split} \int_{E} \mathcal{E}_{\mu}(x,3J) \, d\mu(x) &\sim \mathcal{H}^{1}(J) \int_{E} \# \text{Bad}(x) \, d\mu(x) \\ &= \mathcal{H}^{1}(J) \sum_{k \geq 0} \mu(\{x \in E : k \in \text{Bad}(x)\}) \\ &\stackrel{\text{KGL}}{\lesssim} \mathcal{H}^{1}(J) \sum_{k \geq 0} \sum_{\substack{I \in \text{Gap}, \\ \mathcal{H}^{1}(I) \sim \mathcal{H}^{1}(J) \geq -k}} \mu(\pi^{-1}(5I)) \\ &\sim \mathcal{H}^{1}(J) \sum_{k \geq 0} \sum_{\substack{I \in \text{Gap}, \\ k \geq 0}} \mathcal{H}^{1}(I) \lesssim \mathcal{H}^{1}(J) \, \text{diam}(E). \end{split}$$

A question

Qualitative ULFL

Suppose that *E* is compact, and for every $x \in E$ we have

$$\liminf_{r\to 0}\frac{\mathsf{Fav}(E\cap B(x,r))}{r}>0.$$

Does this imply $\gamma(E) > 0$?

A question

Qualitative ULFL

Suppose that *E* is compact, and for every $x \in E$ we have

$$\liminf_{r\to 0}\frac{\mathsf{Fav}(E\cap B(x,r))}{r}>0.$$

Does this imply $\gamma(E) > 0$?

Thank you!