Favard length and quantitative rectifiability Damian Dąbrowski #### Removable sets A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω . #### Removable sets A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω . #### Removable sets A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω . # **Analytic capacity** In 1947 Ahlfors characterized removability in terms of analytic capacity: *E* is removable $$\Leftrightarrow$$ $\gamma(E) = 0$, where $$\gamma(E) = \sup\{|f'(\infty)| : f : \mathbb{C} \setminus E \to \mathbb{C} \text{ analytic}, \|f\|_{\infty} \le 1\},$$ $$f'(\infty) = \lim_{z \to \infty} z(f(z) - f(\infty)).$$ #### Painlevé problem Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$. ## Painlevé problem Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$. #### Classical: - If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$. - If $dim_H(E) > 1$, then $\gamma(E) > 0$. # Painlevé problem Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$. #### Classical: - If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$. - If $dim_H(E) > 1$, then $\gamma(E) > 0$. - If E is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$. # Painlevé problem Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$. #### Classical: - If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$. - If $dim_H(E) > 1$, then $\gamma(E) > 0$. - If E is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$. #### Question $$\gamma(E) = 0 \Leftrightarrow \mathcal{H}^1(E) = 0$$? #### Painlevé problem Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$. #### Classical: - If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$. - If $\dim_H(E) > 1$, then $\gamma(E) > 0$. - If E is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$. #### Question $$\gamma(E) = 0 \Leftrightarrow \mathcal{H}^1(E) = 0$$? No! There are sets $E \subset \mathbb{C}$ with $\gamma(E) = 0$ and $0 < \mathcal{H}^1(E) < \infty$. (Vitushkin 1959, Garnett, Ivanov 1970s) # Vitushkin's conjecture The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied $$\mathcal{H}^1(\pi_{\theta}(E)) = 0$$ for a.e. direction $\theta \in [0, \pi]$. # Vitushkin's conjecture The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied $$\mathcal{H}^1(\pi_{\theta}(E)) = 0$$ for a.e. direction $\theta \in [0, \pi]$. Define Favard length of E as $$\mathsf{Fav}(E) = \int_0^\pi \mathcal{H}^1(\pi_\theta(E)) \ d\theta.$$ #### Vitushkin's conjecture (1967) $$\gamma(E) = 0 \Leftrightarrow \operatorname{Fav}(E) = 0$$ # Solution to Vitushkin's conjecture # Vitushkin's conjecture $$\gamma(E) = 0 \Leftrightarrow Fav(E) = 0$$ • In the case $\mathcal{H}^1(E) < \infty$ Vitushkin's conjecture is **true**! (Calderón '77, David '98) # Solution to Vitushkin's conjecture #### Vitushkin's conjecture $$\gamma(E) = 0 \Leftrightarrow Fav(E) = 0$$ - In the case $\mathcal{H}^1(E) < \infty$ Vitushkin's conjecture is **true**! (Calderón '77, David '98) - In the case $\mathcal{H}^1(E) = \infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88): $$\mathsf{Fav}(E) = 0 \quad \Rightarrow \quad \gamma(E) = 0.$$ # Solution to Vitushkin's conjecture #### Vitushkin's conjecture $$\gamma(E) = 0 \Leftrightarrow \operatorname{Fav}(E) = 0$$ - In the case $\mathcal{H}^1(E) < \infty$ Vitushkin's conjecture is **true**! (Calderón '77, David '98) - In the case $\mathcal{H}^1(E) = \infty$, Vitushkin's conjecture is **false** (Mattila '86, Jones-Murai '88): $$Fav(E) = 0 \implies \gamma(E) = 0.$$ · What about $$\mathsf{Fav}(E) = 0 \quad \Leftarrow \quad \gamma(E) = 0?$$ # Open problems # Problem 1 (qualitative) $$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$? Open for sets $E \subset \mathbb{C}$ with $\dim_H(E) = 1$ and non- σ -finite \mathcal{H}^1 -measure. # Open problems # Problem 1 (qualitative) $$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$? Open for sets $E \subset \mathbb{C}$ with $\dim_H(E) = 1$ and non- σ -finite \mathcal{H}^1 -measure. #### Problem 2 (quantitative) $$\gamma(E) \gtrsim \mathsf{Fav}(E)$$? $\gamma(E) \gtrsim_{\mathsf{Fav}(E)} 1$? Open even for sets with finite length. # length? What happens for sets with finite #### Geometric ingredient: #### Theorem (Besicovitch 1939) Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, #### Geometric ingredient: #### Theorem (Besicovitch 1939) Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, #### Geometric ingredient: #### Theorem (Besicovitch 1939) Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$. #### Geometric ingredient: #### Theorem (Besicovitch 1939) Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathcal{H}^1(E \cap \Gamma) > 0$. #### Analytic ingredient: #### Theorem (Calderón 1977) If Γ is a rectifiable curve and $F \subset \Gamma$ satisfies $\mathcal{H}^1(F) > 0$, then $$\gamma(F) > 0.$$ # Vitushkin's conjecture when $\mathcal{H}^1(E) < \infty$ #### Goal $$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$ If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ $$\gamma(E) \geq \gamma(E \cap \Gamma)$$ # Vitushkin's conjecture when $\mathcal{H}^1(E) < \infty$ #### Goal $$\mathsf{Fav}(E) > 0 \quad \Rightarrow \quad \gamma(E) > 0$$ If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ $$\gamma(E) \ge \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on)}}{>} 0.$$ # Vitushkin's conjecture when $\mathcal{H}^1(E) < \infty$ #### Goal $$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$ If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ $$\gamma(E) \ge \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on)}}{>} 0.$$ - · Why does it only work for sets with finite length? - · Why does it give no quantitative estimates? # First problem The Besicovitch projection theorem fails for sets with infinite length! $K = C_{1/3} \times C_{1/3}$ satisfies $Fav(K) \gtrsim 1$ and $\mathcal{H}^1(K \cap \Gamma) = 0$ for every rectifiable curve. Recall: if $0 < \mathcal{H}^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then $\exists \, \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and $$\gamma(E) \geq \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on)}}{>} 0.$$ Recall: if $0 < \mathcal{H}^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and $$\gamma(E) \ge \gamma(E \cap \Gamma) > 0.$$ There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an L-Lipschitz graph, then $$\gamma(E \cap \Gamma) \gtrsim_{L} \mathcal{H}^{1}(E \cap \Gamma)...$$ Recall: if $0 < \mathcal{H}^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and $$\gamma(E) \ge \gamma(E \cap \Gamma) > 0.$$ There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an L-Lipschitz graph, then $$\gamma(E \cap \Gamma) \gtrsim_{L} \mathcal{H}^{1}(E \cap \Gamma)...$$...but the Besicovitch projection theorem gives no quantitative bound neither on $\mathcal{H}^1(E \cap \Gamma)$, nor on Lip(Γ)! Recall: if $0 < \mathcal{H}^1(E) < \infty$ and $\mathsf{Fav}(E) > 0$, then $\exists \Gamma$ with $\mathcal{H}^1(E \cap \Gamma) > 0$ and $$\gamma(E) \ge \gamma(E \cap \Gamma)^{\text{(Calder\'on)}} > 0.$$ There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an L-Lipschitz graph, then $$\gamma(E \cap \Gamma) \gtrsim_L \mathcal{H}^1(E \cap \Gamma)...$$...but the Besicovitch projection theorem gives no quantitative bound neither on $\mathcal{H}^1(E \cap \Gamma)$, nor on Lip(Γ)! #### Favard length problem Can we quantify the dependence of $Lip(\Gamma)$ and $\mathcal{H}^1(E \cap \Gamma)$ on Fav(E)? Favard length problem # Naive conjecture... #### Theorem (Besicovitch 1939) Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $$\mathcal{H}^1(E\cap\Gamma)>0.$$ #### Naive conjecture Let $E \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $Fav(E) \gtrsim 1$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $Lip(\Gamma) \lesssim 1$ and $$\mathcal{H}^1(E\cap\Gamma)\gtrsim 1.$$ #### ... is false For any $\varepsilon > 0$ there exists a set $E = E_{\varepsilon} \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $\mathsf{Fav}(E) \gtrsim 1$ such that for all L-Lipschitz graphs Γ E consists of ε^{-2} uniformly distributed circles of radius ε^2 . # Reasonable conjecture We say that $E \subset \mathbb{R}^2$ is Ahlfors regular if for every $x \in E$ and 0 < r < diam(E) $$C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$$ # Reasonable conjecture We say that $E \subset \mathbb{R}^2$ is Ahlfors regular if for every $x \in E$ and 0 < r < diam(E) $$C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$$ #### Reasonable conjecture Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and $$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$ Variations on this conjecture appearing since the 90s in the works of David and Semmes, Mattila, Peres and Solomyak. big projections big projections \Rightarrow many lines with few intersections big projections \Rightarrow many lines with few intersections big projections \Rightarrow many lines with few intersections \Rightarrow cones with no intersections big projections \Rightarrow many lines with few intersections \Rightarrow cones with no intersections \Rightarrow subset of a Lipschitz graph big projections \Rightarrow many lines with few intersections \Rightarrow cones with no intersections \Rightarrow subset of a Lipschitz graph ### Previous work ### Reasonable conjecture Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and $$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$ Progress on the conjecture consisted of replacing "Fav(E) $\gtrsim \mathcal{H}^{1}(E)$ " by: - · David-Semmes '93: big projection + WGL - Martikainen-Orponen '18: projections in L^2 - · Orponen '21: plenty of big projections - **D.** '22: projections in L^{∞} ### New result: the conjecture is true! ### Theorem (D. '24) Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and $$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$ ### New result: the conjecture is true! ### Theorem (D. '24) Let $E \subset \mathbb{R}^2$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and $$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$ #### Corollaries: - · a positive answer to a 1993 question of David and Semmes, - · a positive answer to a 2002 question of Peres and Solomyak, - · progress on Vitushkin's conjecture. Back to Vitushkin ### Estimates for Ahlfors regular sets #### Quantitative Vitushkin's conjecture If $E \subset \mathbb{R}^2$ is compact and $\mathsf{Fav}(E) \geq \kappa \, \mathsf{diam}(E)$, do we have $$\gamma(E)\gtrsim_{\kappa} \operatorname{diam}(E)$$? Partial results in Chang-Tolsa '20, Tasso '22, D.-Villa '22. ### Estimates for Ahlfors regular sets ### Quantitative Vitushkin's conjecture If $E \subset \mathbb{R}^2$ is compact and $Fav(E) \geq \kappa \operatorname{diam}(E)$, do we have $$\gamma(E)\gtrsim_{\kappa} \operatorname{diam}(E)$$? Partial results in Chang-Tolsa '20, Tasso '22, D.-Villa '22. ### Corollary (D. '24) If $E \subset \mathbb{R}^2$ is Ahlfors regular and $Fav(E) \geq \kappa \operatorname{diam}(E)$, then $$\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E)$$. We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E) $$\mathsf{Fav}(E\cap B(x,r))\geq \kappa r.$$ We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E) $$\operatorname{Fav}(E \cap B(x,r)) \geq \kappa r.$$ $$\downarrow \varepsilon^2$$ We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E) A set violating ULFL We say that a set $E \subset \mathbb{R}^2$ has uniformly large Favard length if it is compact and for all $x \in E$ and 0 < r < diam(E) $$\mathsf{Fav}(E\cap B(x,r))\geq \kappa r.$$ ### Corollary (D. '24 + D.-Villa '22) If $E \subset \mathbb{R}^2$ has ULFL, then $$\gamma(E) \gtrsim_{\kappa} \operatorname{diam}(E)$$. Proof of the main result ### Goal ### Theorem (D. '24) Let $E \subset B(0,1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and $$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$ #### Theorem (D. '24) Let $E \subset B(0,1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and $$\mathcal{H}^1(E\cap\Gamma)\gtrsim \mathcal{H}^1(E).$$ Key tool: **conical energies** introduced in **[Martikainen-Orponen '18]** and **[Chang-Tolsa '20]**. For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \text{span}(\theta)$. For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \text{span}(\theta)$. $$X(\mathsf{x},\mathsf{G}) \coloneqq \bigcup_{\theta \in \mathsf{G}} \ell_{\mathsf{x},\theta}.$$ For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \operatorname{span}(\theta)$. For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \text{span}(\theta)$. For any $\theta \in \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $\ell_{x,\theta} := x + \text{span}(\theta)$. Given $G \subset \mathbb{S}^1$ and $x \in \mathbb{R}^2$ set $$X(x,G) := \bigcup_{\theta \in G} \ell_{x,\theta}.$$ Given 0 < r < R we define the truncated cones $$X(x,G,r) := X(x,G) \cap B(x,r)$$ and $$X(x,G,r,R) := X(x,G,R) \setminus B(x,r).$$ ### Conical energies Given $x \in \mathbb{R}^2$, $G \subset \mathbb{S}^1$, and a measure μ we define the **conical energy of** μ at x as $$\mathcal{E}_{\mu}(x,G) = \int_{0}^{\infty} \frac{\mu(X(x,G,r))}{r} \frac{dr}{r}$$ ### Conical energies Given $x \in \mathbb{R}^2$, $G \subset \mathbb{S}^1$, and a measure μ we define the conical energy of μ at x as $$\mathcal{E}_{\mu}(x,G) = \int_{0}^{\infty} \frac{\mu(X(x,G,r))}{r} \, \frac{dr}{r} \sim \sum_{k \in \mathbb{Z}} \frac{\mu(X(x,G,2^{-k},2^{-k+1}))}{2^{-k}}.$$ ### Finding Lipschitz graphs Note: if $\mathcal{E}_{\mu}(x,J)=0$ for μ -a.e. x with a fixed arc $J\subset\mathbb{S}^1$, then $$\mu(X(x,J)) = 0$$ for μ -a.e. x , and so μ is concentrated on a Lipschitz graph. ### Finding Lipschitz graphs Note: if $\mathcal{E}_{\mu}(x,J) = 0$ for μ -a.e. x with a fixed arc $J \subset \mathbb{S}^1$, then $$\mu(X(x,J)) = 0$$ for μ -a.e. x , and so μ is concentrated on a Lipschitz graph. ### Theorem (Martikainen-Orponen '18) Assume that $E \subset B(0,1)$ is Ahlfors regular, $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$, and there exists an arc $J \subset \mathbb{S}^1$ with $\mathcal{H}^1(J) \gtrsim 1$ such that for $\mu = \mathcal{H}^1|_F$ $$\mathcal{E}_{\mu}(x,J)\lesssim 1.$$ Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $Lip(\Gamma) \lesssim 1$ and $\mathcal{H}^1(F \cap \Gamma) \gtrsim 1$. ### From big projections to conical energies big projections ⇒ many lines with few intersections ⇒ cones with no intersections ⇒ subset of a Lipschitz graph ### From big projections to conical energies big projections ⇒ many lines with few intersections ⇒ bounded conical energies [MO18] subset of a Lipschitz graph #### Lemma Let $E \subset B(0,1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. #### Lemma Let $E \subset B(0,1)$ be an Ahlfors regular set with $Fav(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$ #### Lemma Let $E \subset B(0,1)$ be an Ahlfors regular set with $\mathsf{Fav}(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$ such that for every $x \in F$ there is $G(x) \subset \mathbb{S}^1$ with $\mathcal{H}^1(G(x)) \gtrsim 1$ and $\mathcal{E}_{\mu}(x,G(x)) \lesssim 1$. #### Lemma Let $E \subset B(0,1)$ be an Ahlfors regular set with $\mathsf{Fav}(E) \gtrsim \mathcal{H}^1(E)$. Then, there exists $F \subset E$ with $\mathcal{H}^1(F) \sim \mathcal{H}^1(E)$ such that for every $x \in F$ there is $G(x) \subset \mathbb{S}^1$ with $\mathcal{H}^1(G(x)) \gtrsim 1$ and $\mathcal{E}_{\mu}(x,G(x)) \lesssim 1$. This is close to [MO18], but there are two problems: - $G(x) \subset \mathbb{S}^1$ might not be an arc, - G(x) depends on the point x. [MO18] requires that G(x) = J for some fixed arc $J \subset \mathbb{S}^1$. # Good directions propagate # Good directions propagate $$\int_{F} \mathcal{E}_{\mu}(x, G_{*}(x)) d\mu(x) \lesssim \int_{F} \mathcal{E}_{\mu}(x, G(x)) d\mu(x) \lesssim \mu(F).$$ ### Good directions propagate $$\int_F \mathcal{E}_{\mu}(x,J) \, d\mu(x) \lesssim \int_F \mathcal{E}_{\mu}(x,G_*(x)) \, d\mu(x) \lesssim \int_F \mathcal{E}_{\mu}(x,G(x)) \, d\mu(x) \lesssim \mu(F).$$ ### Good directions propagate $$\int_{F} \mathcal{E}_{\mu}(x,J) \, d\mu(x) \lesssim \int_{F} \mathcal{E}_{\mu}(x,G_{*}(x)) \, d\mu(x) \lesssim \int_{F} \mathcal{E}_{\mu}(x,G(x)) \, d\mu(x) \lesssim \mu(F).$$ Proof of the main result: Lemma + Propagation + [MO18] = big piece of a Lipschitz graph. ### Proposition Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. ### Proposition Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. Assume that there is an arc $J \subset \mathbb{S}^1$ "parallel" to the segments such that $$E \cap X(x,J) = \{x\}$$ for $x \in E$. ### Proposition Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. Assume that there is an arc $J \subset \mathbb{S}^1$ "parallel" to the segments such that $$E \cap X(x, J) = \{x\}$$ for $x \in E$. Then, $$\int \mathcal{E}_{\mu}(\mathsf{x}, \mathsf{3J}) \, d\mu(\mathsf{x}) \lesssim \mathcal{H}^{1}(\mathsf{J})\mu(\mathsf{E}).$$ ### Proposition Let $E \subset B(0,1)$ be an Ahlfors regular set consisting of parallel segments. Assume that there is an arc $J \subset \mathbb{S}^1$ "parallel" to the segments such that $$E \cap X(x,J) = \{x\}$$ for $x \in E$. Then, $$\int \mathcal{E}_{\mu}(x, 3J) d\mu(x) \lesssim \mathcal{H}^{1}(J)\mu(E).$$ $$\begin{split} \mathcal{E}_{\mu}(x,3J) &= \mathcal{E}_{\mu}(x,3J \setminus J) \sim \sum_{k \in \mathbb{Z}} \frac{\mu(X(x,3J \setminus J,2^{-k},2^{-k+1}))}{2^{-k}} \\ &= \sum_{k \in \text{Bad}(x)} \frac{\mu(X(x,3J \setminus J,2^{-k},2^{-k+1}))}{2^{-k}} \sim \mathcal{H}^{1}(J) \cdot \# \text{Bad}(x). \end{split}$$ If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that $$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$ and $\pi(x) \in 5I$. If $k \in Bad(x)$, then there exists a "gap" I in $\pi(E)$ such that $$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$ and $\pi(x) \in 5I$. If $k \in \text{Bad}(x)$, then there exists a "gap" I in $\pi(E)$ such that $$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$ and $\pi(x) \in 5I$. $$\int_{E} \mathcal{E}_{\mu}(x,3J) d\mu(x) \sim \mathcal{H}^{1}(J) \int_{E} \# \text{Bad}(x) d\mu(x)$$ If $k \in \text{Bad}(x)$, then there exists a "gap" I in $\pi(E)$ such that $$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$ and $\pi(x) \in 5I$. $$\int_{E} \mathcal{E}_{\mu}(x,3J) d\mu(x) \sim \mathcal{H}^{1}(J) \int_{E} \# \text{Bad}(x) d\mu(x)$$ $$= \mathcal{H}^{1}(J) \sum_{k \geq 0} \mu(\{x \in E : k \in \text{Bad}(x)\})$$ If $k \in \text{Bad}(x)$, then there exists a "gap" I in $\pi(E)$ such that $$\mathcal{H}^1(I) \sim \mathcal{H}^1(J) \cdot 2^{-k}$$ and $\pi(x) \in 5I$. $$\int_{E} \mathcal{E}_{\mu}(x,3J) d\mu(x) \sim \mathcal{H}^{1}(J) \int_{E} \# \text{Bad}(x) d\mu(x)$$ $$= \mathcal{H}^{1}(J) \sum_{k \geq 0} \mu(\{x \in E : k \in \text{Bad}(x)\})$$ $$\stackrel{\text{KGL}}{\lesssim} \mathcal{H}^{1}(J) \sum_{k \geq 0} \sum_{\substack{l \in \text{Gap}, \\ \mathcal{H}^{1}(I) \sim \mathcal{H}^{1}(J) 2^{-k}}} \mu(\pi^{-1}(5I))$$ If $k \in \text{Bad}(x)$, then there exists a "gap" I in $\pi(E)$ such that $$\mathcal{H}^1(I) \sim \mathcal{H}^1(I) \cdot 2^{-k}$$ and $\pi(x) \in 5I$. $$\begin{split} \int_{E} \mathcal{E}_{\mu}(x,3J) \, d\mu(x) &\sim \mathcal{H}^{1}(J) \int_{E} \# \text{Bad}(x) \, d\mu(x) \\ &= \mathcal{H}^{1}(J) \sum_{k \geq 0} \mu(\{x \in E : k \in \text{Bad}(x)\}) \\ &\stackrel{\text{KGL}}{\lesssim} \mathcal{H}^{1}(J) \sum_{k \geq 0} \sum_{\substack{I \in \text{Gap}, \\ \mathcal{H}^{1}(I) \sim \mathcal{H}^{1}(J) \geq -k}} \mu(\pi^{-1}(5I)) \\ &\sim \mathcal{H}^{1}(J) \sum_{k \geq 0} \sum_{\substack{I \in \text{Gap}, \\ k \geq 0}} \mathcal{H}^{1}(I) \lesssim \mathcal{H}^{1}(J) \, \text{diam}(E). \end{split}$$ ### A question #### **Qualitative ULFL** Suppose that *E* is compact, and for every $x \in E$ we have $$\liminf_{r\to 0}\frac{\mathsf{Fav}(E\cap B(x,r))}{r}>0.$$ Does this imply $\gamma(E) > 0$? ### A question #### **Qualitative ULFL** Suppose that *E* is compact, and for every $x \in E$ we have $$\liminf_{r\to 0}\frac{\mathsf{Fav}(E\cap B(x,r))}{r}>0.$$ Does this imply $\gamma(E) > 0$? # Thank you!