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- quasicircles, graphs of continuous functions
(Jarvenpaa-Jarvenpaa-McManus-0'Neil '03)

- fractal percolation
(Arhosalo-Jarvenpaa-jarvenpad-Rams-Shmerkin 12)

- self-similar and self-affine sets satisfying additional
hypotheses (JJMO '03, Falconer-Fraser "13, Rossi '21,
Jarvenpaa-)arvenpaa-Suomala-Wu '22)
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Past work

Progress for general sets:
- (Jarvenpaa-jarvenpaa-Niemela '04)
0<H(E)<oo = H>(Visg(E))=0

- (Orponen '22)
dim Visg(E) < 1.99

Still unknown: ]
dim Visg(E) < dimE
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A compact set E is s-Ahlfors regular if for all x € E,
0 < r < diam(E)
H>(ENB(X,1)) ~r°.

Equivalently: forany 0 < r < R < diam(E) and x € E

N(E N B(x,R), 1) ~ <R>S

r

E.g. all self-similar sets satisfying the open set condition are
Ahlfors regular.
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dim Visp(E) < s —a(s —1),

where o = 0.1835.. ..
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Orponen’s approach

Fix # € S'. We want to show
H2ST(Visg(E)) = 0.
Fix > 0. Let £ be the lines with direction 8. We divide

- good lines: £ € L if £NE is similar to £(5) N E(9)
- bad lines: ¢ € Lg otherwise

@ * ::a '5

o

.gﬁ L |




You can easily estimate H257(Visg(E) N Lg).
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To estimate Visg(E) N Lg, one uses Fourier analysis to show that

H -7 (me(L)) = 0.
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To estimate Visg(E) N Lg, one uses Fourier analysis to show that

H!S"(mo(Ls)) = O.

Then,
H2T(Visg(E) N Lg) < H2ST(Lg) = M!S (me(Lg)) = 0.

All in all,

H2TT (Visg(E)) < H2S™(Visa(E) N Lg) + H2S T (Visg(E) N Lg) = 0,

and so dim Visg(E) <2 — 7.
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Slices of fractals

Theorem (Marstrand '54)
If s>1and 0 < H*>(E) < oo, then for a.e. § and H*-a.e. x € E

dim(EN fg) =5 — 1.
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We say that £ is a heavy line for E if
dim(EN¥¢) > dimE—1.
For € S' we define the heavy part of E as

Ho(E)=En | ¢,

LeHy
where Hy is the collection of heavy lines for E with direction 6.

Theorem (D. '23)
If E is s-Ahlfors regular, s > 1, then for a.e. §

dim Hy(E) < 1.

Compare with Marstrand: H>(Hg(E)) = 0.
13
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Proof of the dimension drop

Theorem (D. '23)
If E is s-Ahlfors regular, s > 1, then

dim Visg(E) < s — a(s — 1),
where o = 0.1835. ..
Fix § € S'. We want to show
Hoo " (Visg(E)) = 0

forany 7 < a(s—1).
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Fix § > 0. Let £ be the lines with direction 6. We divide
- L e Hiflis heavy for E
- L€ Lsif¢NEissimilarto £(0) N E(S)
- leLpifldHUL
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Conclusion

We estimate:
- the heavy part

3T (Visa(E) N | 0) < M7 (Ha(E)) =0,
=
- the good part as in Orponen’s proof

Hoo " (Visg(E) N Lg) = 0,
- the bad part
Hoo 7 (Visg(E) N Lg) < H27(EN Lg)
<HLTC V(mp(Ls)) = Hi " (mo(Ls)) = O.

Hence, dim Visp(E) < s — 7.
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Questions

- Improve @ = 0.1835... in the main theorem! Either for
Ahlfors regular sets, or for a smaller class of sets (e.g. nice
self-similar sets).

- The estimate for dimension of heavy parts has been
improved and generalized in [D.-Orponen-Wang '23]. Can
this be used to get dimension drop for Visy(E) for general
sets?



Thank you!
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