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Singular integral operators



Singular integral operators

Given a kernel K : R \ {0} → R we say that the operator

Tf(x) :=
∫
R
K(x− y) f(y)dy

is a singular integral operator if K /∈ L1(R).

The prototypical example: the Hilbert transform

Hf(x) :=
∫
R

1
x− y f(y)dy

= p.v.
∫ 1

x− y f(y)dy
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Cancellation in the Hilbert transform
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A little history

Problem
When can we define Hf for f ∈ Lp(R), 1 < p < ∞? When is the Hilbert transform
bounded on Lp, i.e.

∥Hf∥Lp ≤ C∥f∥Lp?

• the Hilbert transform is bounded on L2(R) [Hilbert 1900s]
• the Hilbert transform is bounded on Lp(R) for 1 < p < ∞ [Riesz 1928]
• general theory of singular integral operators was developed by Calderón and
Zygmund in the 1950s
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Motivation: boundary values of analytic functions

Given f ∈ C∞c (R) consider the Cauchy integral

C f(z) := c
∫
R

f(t)
z− t dt,

z ∈ C+ = {z = x+ iy : y > 0}.

C f(z)C+

f(t)

The function Cf(z) is holomorphic in C+, and

C f(x+ iy) y→0+−−−→ f(x) + iHf(x).

Studying boundary values of C f(z) for f ∈ Lp(R) leads to questions on the
Lp-boundedness of H.

5



Motivation: boundary values of analytic functions

Given f ∈ C∞c (R) consider the Cauchy integral

C f(z) := c
∫
R

f(t)
z− t dt,

z ∈ C+ = {z = x+ iy : y > 0}. x

C f(z)C+

f(t)

The function Cf(z) is holomorphic in C+, and

C f(x+ iy) y→0+−−−→ f(x) + iHf(x).

Studying boundary values of C f(z) for f ∈ Lp(R) leads to questions on the
Lp-boundedness of H.

5



Painlevé problem



Riemann’s theorem on removable singularities

Theorem (Riemann)
If z0 ∈ Ω ⊂ C and f : Ω \ {z0} → C is analytic and bounded, then f can by
extended analytically to all of Ω.

f : Ω \ {z0} → C

f : Ω → C

Ω

z0
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Removable sets

A compact set E ⊂ C is removable for bounded analytic functions if for any open
Ω ⊂ C containing E, each bounded analytic function f : Ω \ E → C has an analytic
extension to Ω.

E
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Examples

• a singleton is removable,

• a ball is non-removable,
• a segment is non-removable.

Painlevé problem
Find a geometric characterization of compact sets removable for bounded
analytic functions.
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Some classical results

• if length(E) = 0, then E is removable (Painlevé 1892)
• if dim(E) > 1, then E is non-removable
• if E is connected, then E is non-removable

So the Painlevé problem is concerned with 1-dimensional totally disconnected
sets of positive length.
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Removable set with positive length

Theorem (Vitushkin, Ivanov, Garnett 60s)
There exists a removable set K ⊂ C with length(K) > 0.

The example of Ivanov and Garnett is the 4-corners Cantor set:
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Geometric measure theory



Rectifiable vs purely unrectifiable

A rectifiable curve Γ ⊂ R2 is a curve with length(Γ) < ∞.

A set E ⊂ R2 is rectifiable if there exists a countable number of rectifiable curves
Γi such that

length

(
E \
∪
i
Γi

)
= 0.

We say that F ⊂ R2 is purely unrectifiable if for every rectifiable curve Γ

length(F ∩ Γ) = 0.
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Conjectures of Denjoy and Vitushkin

Theorem (Denjoy 1909)
If E is rectifiable and length(E) > 0, then E is non-removable.

Vitushkin’s conjecture (1967)
If E is purely unrectifiable and length(E) < ∞, then E is removable
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Conjectures of Denjoy and Vitushkin

Theorem (Denjoy 1909) Denjoy’s conjecture
If E is rectifiable and length(E) > 0, then E is non-removable.

Vitushkin’s conjecture (1967)
If E is purely unrectifiable and length(E) < ∞, then E is removable

Both conjectures are true, solving the Painlevé problem for sets of finite length!

E is removable ⇔ E is purely unrectifiable
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Key tool: the Cauchy integral

Recall the Cauchy integral we saw before:

C f(z) := c
∫
R

f(t)
z− t dt, z ∈ C+

We can define similarly the Cauchy integral of a measure µ on C:

Cµ(z) = c
∫ 1

z− w dµ(w), z ∈ C \ suppµ.

We have
∂̄(Cµ) = −µ,

so that Cµ is holomorphic on C \ suppµ, but not on suppµ.

An approach to proving non-removability
Given E ⊂ C, if we find a measure µ on E such that Cµ is bounded on C \ E, then
we get that E is non-removable!
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Cauchy transform on a Lipschitz graph

Let A : R → R be Lipschitz, so that |A(t)− A(s)| ≤ C|t− s|.

Set Γ = {t+ iA(t) : t ∈ R}.

For f ∈ C∞c (Γ) we consider the Cauchy integral

CΓf(z) = c
∫
Γ

1
z− w f(w)dw, z ∈ C \ Γ.

For z ∈ Γ

CΓf(z+ iδ) δ→0+−−−→ f(z) + iCΓf(z),

CΓf(z− iδ) δ→0+−−−→ f(z)− iCΓf(z),

where CΓf(z) is the Cauchy transform of f on Γ

CΓf(z) = p.v.
∫
Γ

1
z− w f(w)dw, z ∈ Γ.
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Cancellation in the Cauchy transform

Hf(x) = p.v.
∫ 1

x− y f(y)dy

CΓf(z) = p.v.
∫
Γ

1
z− w f(w)dw

x
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Cancellation in the Cauchy transform

The more flatness, the more cancellations!
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Solution to Denjoy’s conjecture

CΓf(z) = p.v.
∫
Γ

1
z− w f(w)dw, z ∈ Γ.

Theorem (Calderón 1977)
If Lip(Γ) ≪ 1, then

∥CΓf∥L2(Γ) ≤ C∥f∥L2(Γ).

Corollary (Marshall)
Denjoy’s conjecture is true: if E is rectifiable and length(E) > 0, then E is
non-removable.

Theorem (Coifman-McIntosh-Meyer 1982)
Lip(Γ) < ∞ is enough for ∥CΓf∥L2(Γ) ≤ C∥f∥L2(Γ).

16
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Cauchy transform and removability

Given a measure µ on C and f ∈ L1loc(µ) we may consider the Cauchy transform
defined by µ

Cµf(z) = p.v.
∫ 1

z− w f(w)dµ(w), z ∈ suppµ.

Theorem (Davie-Øksendal, Murai 80s)
If E supports a measure µ such that Cµ : L2(µ) → L2(µ), then E is non-removable.

Theorem (Tolsa 2003)
The converse holds: if E is non-removable, then it supports a measure µ such
that Cµ : L2(µ) → L2(µ).

Problem
Which measures define L2-bounded Cauchy transform?

17
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Examples

• if µ is “more than 1-dimensional”, then Cµ is L2(µ)-bounded ✓

• if µ is “less than 1-dimensional”, then Cµ is not L2(µ)-bounded 7

• if µ is the arc-length on a Lipschitz graph, then Cµ is L2(µ)-bounded ✓
• if µ is the natural measure on the 4-corners Cantor set, then Cµ is not
L2(µ)-bounded 7
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Can we characterize boundedness of Cauchy transform using rectifiability?

No 7

• there exist rectifiable sets defining unbounded Cauchy transform
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• there exist rectifiable sets defining unbounded Cauchy transform

18



Quantitative rectifiability



β-numbers (Jones 1990)

Given E ⊂ R2 and a square Q, E ∩ Q ̸= ∅, the β number of E at Q is

βE(Q) = inf
L

sup
x∈E∩Q

dist(x, L)
diam(Q) .

E
βE(Q) diam(Q)

L
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Analyst’s traveling salesman theorem

dyadic lattice of squares D ↭ encoding scales and locations
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Analyst’s traveling salesman theorem

Analyst’s traveling salesman theorem (Jones 1990)
A compact set E ⊂ R2 is contained in a rectifiable curve Γ if and only if

∑
Q∈D

βE(3Q)2 diam(Q) < ∞.

The length of the shortest such curve Γ satisfies

length(Γ) ≈ diam(E) +
∑
Q∈D

βE(3Q)2 diam(Q).

length(Γ0) = diam(E)

length(Γ1)− length(Γ0) ≈ βE(3Q)2 diam(Q)
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Uniformly rectifiable sets

We say that E ⊂ R2 is Ahlfors regular if for any x ∈ E, 0 < r < diam(E)

cr ≤ length(E ∩ B(x, r)) ≤ Cr.

Ahlfors regular non-Ahlfors regular
21



Uniformly rectifiable sets

We say that E ⊂ R2 is Ahlfors regular if for any x ∈ E, 0 < r < diam(E)

cr ≤ length(E ∩ B(x, r)) ≤ Cr.

Recall: a set E ⊂ R2 is rectifiable if there exists a
countable number of rectifiable curves Γi such that

length

(
E \
∪
i
Γi

)
= 0.
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Uniformly rectifiable sets

We say that E ⊂ R2 is Ahlfors regular if for any x ∈ E, 0 < r < diam(E)

cr ≤ length(E ∩ B(x, r)) ≤ Cr.

Recall: a set E ⊂ R2 is rectifiable if there exists a
countable number of rectifiable curves Γi such that

length

(
E \
∪
i
Γi

)
= 0.

A set E ⊂ R2 is uniformly rectifiable if it is an Ahlfors
regular subset of an Ahlfors regular curve.
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Uniform rectifiability and SIOs

Theorem (David-Semmes 1991, 1993)
Let E ⊂ R2 be Ahlfors regular. The following are equivalent:

• E is uniformly rectifiable

• for every R ∈ D ∑
Q⊂R

βE(3Q)2 diam(Q) ≤ C diam(R)

• E can be “well approximated by nice Lipschitz graphs”
• E defines many nice singular integral operators (including the Cauchy
transform)
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Solution of Vitushkin’s conjecture

Vitushkin’s conjecture (1967)
If E is purely unrectifiable and length(E) < ∞, then E is removable.

Theorem (Mattila-Melnikov-Verdera 1996)
If E is Ahflors regular and defines a bounded Cauchy transform, then it is
uniformly rectifiable.

Consequently, Vitushkin’s conjecture holds for Ahlfors regular sets.

Theorem (David 1998)
Vitushkin’s conjecture holds for all sets with length(E) < ∞.
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Other applications of quantitative rectifiability

• solvability of elliptic equations with Lp-boundary data in domains with rough
boundaries

[Azzam, Hofmann, Mayboroda, Martell, Mourgoglou, Tolsa, Volberg]
• estimating size of singular sets for harmonic maps and other variational
problems [Edelen-Naber-Valtorta]
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My work in the area

Rectifiability (2017–2020)
Characterizations of rectifiability and uniform rectifiability using quantities
similar to β-numbers.

Riesz transform (2019–2021, joint with Tolsa)
Geometric characterization of measures µ on Rn defining L2(µ)-bounded
(n− 1)-dimensional Riesz transforms

⇝ removable sets for Lipschitz harmonic functions in Rn

Projections (2021–now, joint with Chang, Orponen, Villa)
Vitushkin’s conjecture for sets of infinite length
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Vitushkin’s conjecture revisited

Vitushkin’s conjecture
If E has length(E) < ∞, then

E is removable ⇔ E is purely unrectifiable.

Vitushkin’s conjecture for general sets

E is removable ⇔ length(πθ(E)) = 0 for a typical projection
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Vitushkin’s conjecture revisited

Vitushkin’s conjecture
If E has length(E) < ∞, then

E is removable ⇔ E is purely unrectifiable.

Vitushkin’s conjecture for general sets

E is removable ⇔ length(πθ(E)) = 0 for a typical projection

The implication ⇐ is false [Mattila ’86, Jones-Murai ’88], but the other implication
is open.

Theorem (D. ’24)
If E is Ahlfors regular and has big projections, then E is uniformly rectifiable.

This answered a question of David and Semmes from 1993.
26



Thank you!
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