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A little history

Problem

When can we define #Hf for f € LP(R), 1 < p < 00? When is the Hilbert transform
bounded on LP, i.e.
[#Hflle < Clifllo?

- the Hilbert transform is bounded on L?(R) [Hilbert 1900s]
- the Hilbert transform is bounded on [P(R) for 1< p < o [Riesz 1928]

- general theory of singular integral operators was developed by Calderén and
Zygmund in the 1950s
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Given f € C°(R) consider the Cauchy integral
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Motivation: boundary values of analytic functions

Given f € C°(R) consider the Cauchy integral
" o ¢f(2)
[t
€f(z) =c Rz—tdt’ :
zeCy={z=x+iy:y>0} X f(t)

The function %f(z) is holomorphic in C,, and
Cfx+ iy) 2% fx) + IHAX).

Studying boundary values of €f(z) for f € LP(R) leads to questions on the
LP-boundedness of H.
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Riemann’s theorem on removable singularities

Theorem (Riemann)
IfzoeQcCandf:Q\{z} — Cis analytic and bounded, then f can by
extended analytically to all of Q.

f:Q\{z} > C
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Painlevé problem
Find a geometric characterization of compact sets removable for bounded
analytic functions.
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Theorem (Vitushkin, lvanov, Garnett 60s)
There exists a removable set K C C with length(K) > 0.
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Rectifiable vs purely unrectifiable

A rectifiable curve I C R? is a curve with length(I) < oo.
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Rectifiable vs purely unrectifiable

A rectifiable curve I' ¢ R? is a curve with length(I) < oo.

A set E C R? is rectifiable if there exists a countable number of rectifiable curves
I; such that

length <E U r,) =0.

We say that F c R? is purely unrectifiable if for every rectifiable curve I

length(FNT) = 0.

(O
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S
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Conjectures of Denjoy and Vitushkin

Theorem (Denjoy 1909)
If E is rectifiable and length(E) > 0, then E is non-removable.

12



Conjectures of Denjoy and Vitushkin

Fheorem-{bBenjoy-1989) Denjoy’s conjecture

If E is rectifiable and length(E) > 0, then E is non-removable.

12



Conjectures of Denjoy and Vitushkin

Fheorem-{bBenjoy-1989) Denjoy’s conjecture
If E is rectifiable and length(E) > 0, then E is non-removable.
Vitushkin’s conjecture (1967)

If E is purely unrectifiable and length(E) < oo, then E is removable

7 »
)
N
\3

12



Conjectures of Denjoy and Vitushkin

Fheorem-{bBenjoy-1989) Denjoy’s conjecture

If E is rectifiable and length(E) > 0, then E is non-removable.

Vitushkin’s conjecture (1967)
If E is purely unrectifiable and length(E) < oo, then E is removable

Both conjectures are true, solving the Painleve problem for sets of finite length!

Eisremovable <« Eis purely unrectifiable
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Key tool: the Cauchy integral

Recall the Cauchy integral we saw before:

Cf(2) = zf(—)t dt, ze Cyt

We can define similarly the Cauchy integral of a measure p on C:

1
Cu(z) = C/ S w du(w), z € C\ supp p.
We have
a((g:u) = —H,
so that €u is holomorphic on C \ supp p, but not on supp p.
An approach to proving non-removability

Given E C C, if we find a measure p on E such that € is bounded on C\ E, then

we get that E is non-removable!
13
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Cauchy transform on a Lipschitz graph

Let A: R — R be Lipschitz, so that |A(t) — A(s)| < C|t —s|.
Setl = {t+IA(t) : t € R}.

For f € C2°(I') we consider the Cauchy integral

1
Gfz)=c [ ——fw)dw, zeC\T.
Forzel ) /F Z=w
Gz +i0) = f(2) + iCH(2),

§—0t

Gz — i) =% f(z) — iCrf(2),

where Crf(z) is the Cauchy transform of fon I’

- Wf(vv) dw, zel. .

Crf(z) = p.v. /r
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Cancellation in the Cauchy transform
1 —/\_\
1) = pv. [ L f) oy .

X—y »

Crf(2) = p.v. /rzjwf(W) dw _/\——\



Cancellation in the Cauchy transform
1 —/\_\
1) = pv. [ L f) oy .

&ﬂ@—nwﬁzjwﬂmdw___,,//////—\\\~_——N\\\\_

7 N\ .



Cancellation in the Cauchy transform

The more flatness, the more cancellations!
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Solution to Denjoy’s conjecture

Crf(z) = p.v. /r

Z_Wf(vv)dvv, zel.
Theorem (Calderdon 1977)
If Lip(I) < 1, then

ICrll2ry < Cliflli2(ry-

Corollary (Marshall)

Denjoy’s conjecture is true: if £ is rectifiable and length(E) > 0, then E is
non-removable.

Theorem (Coifman-McIntosh-Meyer 1982)
Lip(I) < oo is enough for [|Crfl| 2y < ClIfll2¢ry.-
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Cauchy transform and removability

Given a measure pon C and f € Lj, (1) we may consider the Cauchy transform
defined by p

Cuf(z) =p.v. /

1
W) du(w),  z & suppp.
Theorem (Davie-@ksendal, Murai 80s)

If E supports a measure p such that C, : L?(u) — L?(u), then E is non-removable.

Theorem (Tolsa 2003)

The converse holds: if E is non-removable, then it supports a measure u such
that C,, : L?(u) — L?(p).

Problem

Which measures define L2-bounded Cauchy transform?
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- if wis “more than 1-dimensional’, then C,, is L?(u)-bounded v
- if u is “less than 1-dimensional’, then C,, is not L?(u)-bounded X
- if u is the arc-length on a Lipschitz graph, then C,, is L?(u)-bounded v
- If pis the natural measure on the 4-corners Cantor set, then C,, is not
L2(u)-bounded X

Can we characterize boundedness of Cauchy transform using rectifiability? No X

- there exist rectifiable sets defining unbounded Cauchy transform

L O
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Quantitative rectifiability




B-numbers (Jones 1990)

Given E ¢ R? and a square Q, ENQ # @, the B number of Eat Q is

. dist(x, L)
PelQ) =inf b Fam(Q)

Be(Q) diam(Q)
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Analyst’s traveling salesman theorem (Jones 1990)
A compact set E c R? is contained in a rectifiable curve I if and only if

> Be(3Q)? diam(Q) < oo.

QeD

The length of the shortest such curve I satisfies

length(T") ~ diam(E) + ) _ 8¢(3Q)° diam(Q).
QeD

/\\ B
------ T length(I) — length(To) ~ £(30)? diam(Q)
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Uniformly rectifiable sets

We say that E c R? is Ahlfors regular if for any x € £, 0 < r < diam(E)
cr < length(EN B(x,r)) < Cr.
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Uniformly rectifiable sets

We say that E ¢ R? is Ahlfors regular if for any x € E, 0 < r < diam(E)

cr < length(EN B(x,r)) < Cr.

Recall: a set E ¢ R? is rectifiable if there exists a
countable number of rectifiable curves I'; such that

length (E\ U I’,> =0.

A set E c R? is uniformly rectifiable if it is an Ahlfors
regular subset of an Ahlfors regular curve.

21



Uniform rectifiability and SIOs

Theorem (David-Semmes 1991, 1993)
Let £ c R? be Ahlfors regular. The following are equivalent:

- Eis uniformly rectifiable
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Uniform rectifiability and SIOs

Theorem (David-Semmes 1991, 1993)
Let £ c R? be Ahlfors regular. The following are equivalent:

- Eis uniformly rectifiable

- foreveryR e D

3" Be(3Q)* diam(Q) < Cdiam(R)
QCR

- E can be “well approximated by nice Lipschitz graphs”

- E defines many nice singular integral operators (including the Cauchy
transform)

22



Solution of Vitushkin's conjecture

Vitushkin’s conjecture (1967)
If E is purely unrectifiable and length(E) < oo, then E is removable.
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Solution of Vitushkin's conjecture

Vitushkin’s conjecture (1967)
If E is purely unrectifiable and length(E) < oo, then E is removable.

Theorem (Mattila-Melnikov-Verdera 1996)
If E is Ahflors regular and defines a bounded Cauchy transform, then it is
uniformly rectifiable.

Consequently, Vitushkin's conjecture holds for Ahlfors regular sets.

Theorem (David 1998)
Vitushkin’s conjecture holds for all sets with length(E) < oco.
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Other applications of quantitative rectifiability

- solvability of elliptic equations with LP-boundary data in domains with rough
boundaries
[Azzam, Hofmann, Mayboroda, Martell, Mourgoglou, Tolsa, Volberg]

- estimating size of singular sets for harmonic maps and other variational
problems [Edelen-Naber-Valtorta]

24



My work in the area

Rectifiability (2017-2020)
Characterizations of rectifiability and uniform rectifiability using quantities
similar to 8-numbers.
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My work in the area

Rectifiability (2017-2020)
Characterizations of rectifiability and uniform rectifiability using quantities
similar to 8-numbers.

Riesz transform (2019-2021, joint with Tolsa)
Geometric characterization of measures p on R" defining L?(u)-bounded
(n — 1)-dimensional Riesz transforms

~ removable sets for Lipschitz harmonic functions in R"

Projections (2021-now, joint with Chang, Orponen, Villa)
Vitushkin's conjecture for sets of infinite length
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Vitushkin's conjecture revisited

Vitushkin’s conjecture
If E has length(E) < oo, then

E is removable & E is purely unrectifiable.

26



Vitushkin's conjecture revisited

Vitushkin’s conjecture
If E has length(E) < oo, then

E is removable & E is purely unrectifiable.

Vitushkin’s conjecture for general sets

E is removable & length(mg(E)) = 0 for a typical projection

o

26



Vitushkin's conjecture revisited

Vitushkin’s conjecture
If E has length(E) < oo, then

E is removable & E is purely unrectifiable.

Vitushkin’s conjecture for general sets

E is removable & length(mg(E)) = 0 for a typical projection

The implication <« is false [Mattila '86, Jones-Murai '88], but the other implication
is open.

Theorem (D. '24)

If E is Ahlfors regular and has big projections, then E is uniformly rectifiable.

This answered a question of David and Semmes from 1993.
26



Thank you!
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