Singular Integral Operators
EXERCISE 5 - 28.11.2023

Exercise 1 (1 point). Prove that in \mathbb{R}^{n} the family of all dyadic cubes containing 0 is $\left(1-2^{-n}\right)$-sparse.

Solution. Let $\mathcal{I}:=\left\{Q \in D\left(\mathbb{R}^{n}\right): 0 \in Q\right\}$. Then, from the definition of dyadic cubes it follows that, if we define $Q_{k}:=\prod_{j=1}^{n}\left[0,2^{-k}\right)$, then

$$
\mathcal{J}=\left\{Q_{k}: k \in \mathbb{Z}\right\}
$$

Hence, we define $E_{Q_{k}}:=Q_{k} \backslash Q_{k+1}$,
 which is such that

$$
\begin{aligned}
\left|E_{Q_{k}}\right| & =\left|Q_{k}\right|-\left|Q_{k m}\right|=2^{-n k}-2^{-n\left(u_{+1}\right)}=\left(1-\frac{1}{2^{n}}\right) 2^{-m k} \\
& =\left(1-\frac{1}{2^{n}}\right)\left|Q_{k}\right| .
\end{aligned}
$$

Moreover, $E_{Q_{k}} \cap E_{Q_{j}}=\varnothing$ for $k \neq j$, so ρ is a $\left(1-\frac{1}{2^{n}}\right)$-sparse family.

Exercise 2 (1 point). Suppose that $\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}$ are sparse families of dyadic cubes, and that each \mathcal{F}_{j} is η_{j}-sparse for some $\eta_{j} \in(0,1]$. Show that $\mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{k}$ is $1 /\left(\sum_{j=1}^{k} \eta_{j}^{-1}\right)$ sparse.

Hint: Use Proposition 7.8.

Solution. By induction, it is enough to prove that the statement holds
for two families F_{1}, F_{2} of dyadic cubes, st. F_{j} is η_{j}-sparse $(j=1,2)$.
By Propasition 7.8 of the lecture notes, we have that \mathcal{F}_{j} is $\frac{1}{\eta_{j}}-\operatorname{codesan}(j=1,2)$.
Thus, for every $R \in D\left(\mathbb{R}^{n}\right)$ we have that

$$
\begin{aligned}
\sum_{Q \in \mathcal{J}_{1} \cup \mathcal{F}_{2}: Q \subset R}|Q| & \leq \sum_{Q \in J_{1}: Q \subset R}|Q|+\sum_{Q_{\in} \mathcal{F}_{2}: Q \subset R}|Q| \\
& \leq\left(\frac{1}{\eta_{1}}+\frac{1}{\eta_{2}}\right)|R| .
\end{aligned}
$$

This shows that $\mathcal{f}_{1} \cup f_{2}$ in a $\left(\frac{1}{\eta_{1}}+\frac{1}{\eta_{2}}\right)$-carleson family and, again by Proposition 7.8, in particular is a $\left(\frac{1}{\eta_{1}}+\frac{1}{\eta_{2}}\right)^{-1}$-sparse family.

Exercise 3 (3 points). For any $s \in(0,1)$ let $w_{s}=|x|^{1-s}$ be a weight on \mathbb{R}.
(i) Show that $w_{s} \in A_{2}$, and $\left[w_{s}\right]_{A_{2}} \leqslant s^{-1}$.
(ii) Given $f_{s}(x)=x^{s-1} \mathbf{1}_{(0,1)}(x)$, show that $\left\|f_{s}\right\|_{L^{2}\left(w_{s}\right)} \leqslant s^{-1 / 2}$.
(iii) Prove that $\left\|H f_{s}\right\|_{L^{2}\left(w_{s}\right)} \geqslant C s^{-3 / 2}$, and conclude that in the estimate from the A_{2} theorem

$$
\|H f\|_{L^{2}(w)} \leqslant C[w]_{A_{2}}\|f\|_{L^{2}(w)},
$$

the factor $[w]_{A_{2}}$ cannot be replaced by $[w]_{A_{2}}^{t}$ for any $t<1$.
Solution.
(i) Let $s \in(0,1)$. We recall that

$$
[\omega]_{A_{2}}:=\sup _{\substack{I C R \\ \text { intswel }}}\left(\frac{1}{|I|} \int_{I} \omega\right)\left(\frac{1}{|I|} \int_{I} \omega^{-1}\right)
$$

We bound the supremum above by splitting the cases of I.
Case (1) Assume that $I=[a, b]$, and that $b>a>0$. Then

$$
\frac{1}{|I|} \int_{I} w_{s}=\frac{1}{|b-a|} \int_{a}^{b} x^{1-5} d x=\frac{1}{2-5} \frac{b^{2-5}-a^{2-5}}{b-a}
$$

and

$$
\frac{1}{|I|} \int_{I} \omega_{s}^{-1}=\frac{1}{|b-a|} \int_{a}^{b} x^{s-1} d x=\frac{1}{s} \frac{\left(b^{s}-a^{s}\right)}{(b-a)}
$$

So
mean val. them.

$$
\begin{aligned}
& \left(\frac{1}{|I|} \int_{I} \omega_{s}\right)\left(\frac{1}{|I|} \int_{I} \omega_{s}^{-1}\right)=\frac{1}{s(2-s)} \frac{\left.\left(b^{5}-a^{5}\right)\left(b^{2-5}-a^{2-s}\right)\right)}{(b-a)^{2}} \leqslant \frac{1}{s(2-5)} \frac{\left(b^{5}-a^{5}\right)\left((2-s) b^{1-5}(b-a)\right)}{(b-a)^{2}} \\
& =\frac{1}{5} \frac{\left(b-a^{5}\left(b^{1-5}\right)^{2}\right.}{(b-a)} \leqslant \frac{1}{s} \frac{(b-a)}{(b-a)}=\frac{1}{s} .
\end{aligned}
$$

Case (2) Assume that $b>a>0$, and that $I=[-a, b]$. Then

$$
\int_{I} \omega_{s}=\int_{0}^{a} \omega_{s}+\int_{0}^{b} \omega_{s}=\frac{1}{(2-5)}\left(b^{2-5}+a^{2-5}\right) .
$$

Moreover

$$
\int_{I} \omega_{s}^{-1}=\int_{0}^{a} \omega_{s}^{-1}+\int_{0}^{b} \omega_{s}^{-1}=\frac{1}{s}\left(b^{s}+a^{s}\right)
$$

So, observing that $|I|=(b+c)$, we hare

$$
\begin{aligned}
\left(\frac{1}{|I|} \int_{I} \omega_{s}\right)\left(\frac{1}{|I|} \int_{T} \omega_{s}^{-1}\right) & =\frac{1}{(b+a)^{2}} \frac{\left(b^{2-s}+a^{2-s}\right)}{(2-s)} \frac{\left(b^{s}+a^{s}\right)}{s} \\
& \leq \frac{1}{(b+a)^{2}} \frac{(b+a)^{2-5}}{(2-s)} \frac{\left(2^{s}(b+a)^{s}\right.}{s}=\frac{2^{s}}{(2-s)} \frac{1}{s} \leq \frac{1}{s},
\end{aligned}
$$

where (1) and (2) fallows by Minkowski and Hölder's inequality (for sims) respectively.

Finslly, we observe that $\omega_{s}(\cdot)$ is on even function, so Cases (1) and (2) allow us to conclude the proof of (i).
(ii) A standard computation yields that

$$
\left\|f_{s}\right\|_{L^{2}\left(\omega_{s}\right)}^{2}=\int_{0}^{1}\left(x^{s-1}\right)^{2} \omega_{s}(x) d x=\int_{0}^{1} x^{s-1} d x=\frac{1}{s}
$$

so $\left\|f_{s}\right\|_{L^{2}\left(\omega_{s}\right)}=s^{1 / 2}$, which proves point (ii).
(iii) Let is first claim that

$$
\begin{equation*}
\left\|H f_{s}\right\|_{L^{2}\left(\omega_{s}\right)} \geq \widetilde{c} s^{-3 / 2} \tag{*}
\end{equation*}
$$

holds. This, together with (i) -(ii) readily implies that, if

$$
\left\|H f_{S}\right\|_{L^{2}\left(\omega_{S}\right)} \leq C\left[\omega_{S}\right]_{A_{2}}^{\alpha}\left\|f_{S}\right\|_{L^{2}\left(\omega_{S}\right)}
$$

holey, then

$$
\widetilde{C} S^{-3 / 2} \leqslant C S^{-1-\frac{\alpha}{2}} \quad \tilde{C} G^{-1} \leqslant S^{\frac{1-\alpha}{2}}
$$

which gives a contradiction for $s \rightarrow 0$ if $\alpha \neq 1$.

We are left with proving the claim ($*$). We first observe that, if $x \geq 2$ and $y \in(0,1)$, then trivially $0<x-y \leq x$. Then:

$$
\begin{aligned}
\left\|H f_{s}\right\|_{L^{2}\left(\omega_{s}\right)}^{2} & \geq \int_{2}^{+\infty}\left|H f_{s}(x)\right|^{2} \omega_{s}(x) d x=\frac{1}{\pi^{2}} \int_{2}^{\infty}\left|\int_{0}^{1} \frac{y^{s-1}}{x-y} d y\right|^{2}|x|^{1-s} d x \\
& \geq \frac{1}{\pi^{2}} \int_{2}^{\infty}\left|\int_{0}^{1} \frac{y^{s-1}}{x} d y\right|^{2} x^{1-s} d x \\
& =\frac{1}{\pi^{2}}\left(\int_{2}^{\infty} \frac{1}{x^{1+s}} d x\right)\left(\int_{0}^{1} y^{s-1} d y\right)^{2}=\frac{1}{\pi^{2}} \frac{1}{s} \frac{1}{2^{5}} \frac{1}{s^{2}} \geq \frac{1}{(2 \pi)^{2}} \frac{1}{s^{3}},
\end{aligned}
$$

where we wed the foot that, by Prop. 5.6 in the lecture notes, the ofoet that $f_{s} \in L^{1}(\mathbb{R})$ implies that $H_{\varepsilon} f \underset{\xi_{0}}{\rightarrow}$ Hf pointeise \mathcal{L}^{1}-ae.
Thus, $\quad\left\|H f_{S}\right\|_{L^{2}\left(\omega_{s}\right)} \geq(2 \pi)^{-1} S^{-3 / 2}$, which proves the claim (*).

Remark: For Ex. 3 we also refer to p. 1374 of the article
S. Petermichl "The sharp band for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A_{p} characteristics n, Am. J. Moth. 129, No 5, 1355-1375 (2007).

