SINGULAR INTEGRAL OPERATORS EXERCISE 4 - 21.11.2023

Exercise 1 (1 point). Let $1 \leq p < \infty$ and $w \in A_p$. Show that $L^1(\mathbb{R}^n)$ is dense in $L^p(w)$. *Hint:* For any $f \in L^p(w)$ prove that $f_R \coloneqq f\mathbf{1}_{B(0,R)} \in L^1(\mathbb{R}^n)$ for all R > 0, and that $f_R \to f$ in $L^p(w)$ as $R \to \infty$. The estimate (6.9) from lecture notes (and its modification for p = 1) may be helpful.

Solution. We study the cases
$$p=1$$
 and $p>1$ separately. Also, we denote as $Q_0:S(Q_0R)$ the case contract at 0, with side-largth Roo, and above oides one possible to the coordinate axis.
We follow the first, and first prove that $f_R:=\int 4L_{Q(Q_0R_0)} \in L^1(R^n)$
 \forall Roo.
(as $p=1$. The (A₁) condition readily implies that
 $\frac{\omega(Q_0R_0)}{|Q_R|}$ if $(\infty) \leq |f(\infty)| (\omega(\infty))|$ for a.e. $x \in Q_R$.
Hence, we have that $\int f \mathcal{H}_{Q_R} \frac{\omega}{\omega} \leq \frac{|Q_R|}{|\omega|Q_0|} \int_{Q_R} f \omega < \infty \Rightarrow f_R \in L^1(\omega) \forall Roo.
(as $L \in L^{2}(\infty)$. For Roo. An application of Hölder's inegality together
with the (A_P) condition gives that, for $f \in L^1(\omega)$, it haldes:
 $\int |f| \mathcal{H}_{B_R} = \int |f| \omega^{\frac{1}{p}} \omega^{-\frac{1}{p}} \mathcal{X}_{Q_R} \stackrel{(M)}{\ll} \int_{Q_R} \frac{f^{-\frac{1}{p}}}{|G_R|} \int_{Q_R} \frac{f^{-\frac{1}{p}}}{|G_R|} \int_{Q_R} \frac{1}{|G_R|} \int_{Q_R} \frac{f^{-\frac{1}{p}}}{|G_R|} = \|f\|_{L^p(\omega)} \left(\frac{1}{|Q_R|} \int_{Q_R} \omega^{+p_1}\right)^{\frac{p-1}{p}} \int_{Q_R} \frac{1}{|G_R|} \int_{Q_R} \frac{$$

1

Hence, $F_R = f \mathcal{X}_{BR}$ belongs to $L^1(\mathbb{R}^m)$ $\forall R>0.$ We are left with proving that $f_R \rightarrow f$ in L'(w) as $R \rightarrow \infty$, for 15 p200. This follows from the fact that $\int |f_R - f|^P \omega = \int |f|^P \omega, \quad (*)$ where the right - hand side of (x) tends to 0 as R-s+00 because fe L'(w), This concludes the exercise.

Exercise 2 (1 point). Prove that in the definition of the A_p condition we may replace cubes by balls and still get the same class of weights. More specifically,

Case 2:
$$|x_0| < 3\Gamma$$
. In this case we have $B(x_0, r) \leq B(0, 5r)$.
We forther observe that $|B(x_0, r)| \sim |B(0, 5r)|$.
Thus
 $\left(\frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} (|x|^{-\frac{\alpha}{p}} dx)^{\frac{p}{p}} \leq \left(\frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} (|x|^{-\frac{\alpha}{p}} dx)^{\frac{p}{p}} \leq \frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} (|x|^{-\frac{\alpha}{p}} dx)^{\frac{p}{p}} \leq \frac{1}{|x|^{-\frac{\alpha}{p}}} dx)^{\frac{p}{p}} \leq \frac{1}{|x|^{-\frac{\alpha}{p}}} dx)^{\frac{p}{p}} \leq \frac{1}{|x|^{-\frac{\alpha}{p}}} dx^{\frac{p}{p}} \leq \frac{1}{|x|^{-\frac{\alpha}{p}}} dx)^{\frac{p}{p}} \leq \frac{1}{|x|^{-\frac{\alpha}{p}}} dx^{\frac{p}{p}} = \frac{1}{|x|^{-\frac{\alpha}{p}}} dx^{\frac{p}{p}} dx)^{\frac{p}{p}} = \frac{1}{|x|^{-\frac{\alpha}{p}}} dx^{\frac{p}{p}} dx)^{\frac{p}{p}} = \frac{1}{|x|^{-\frac{\alpha}{p}}} dx^{\frac{p}{p}} dx)^{\frac{p}{p}} = \frac{1}{|x|^{-\frac{\alpha}{p}}} dx^{\frac{p}{p}} dx)^{\frac{p}{p}} dx^{\frac{p}{p}} dx^{\frac{p}{p}} dx^{\frac{p}{p}} dx^{\frac{p}{p}} dx^{\frac{p}{p}} dx^{\frac{p}{p}} dx^{\frac{p}{p}} dx^{\frac{p}{p}} dx^{\frac{p}{p}} dx^{\frac$

Exercise 4 (1 point). Show that

$$w(x) = \begin{cases} \log \frac{1}{|x|} & |x| \le e^{-1} \\ 1 & |x| > e^{-1} \end{cases}$$

is an A_1 weight on \mathbb{R}^n .

6

$$\begin{array}{c} \hline \textbf{Cover 1: } |k_0| < 2 r \\ \hline \textbf{in} \hline \textbf{in} \\ \hline \textbf{in} \hline \textbf{in} \\ \hline \textbf{in} \\ \hline \textbf{in} \\ \hline \textbf{in} \hline \textbf{in} \\ \hline \textbf{in} \hline \textbf{in} \hline \textbf{in} \hline \textbf{in} \\ \hline \textbf{in} \hline \textbf{in} \\ \hline \textbf{in} \hline \textbf{$$