Singular Integral Operators
EXERCISE 3-14.11.2023

Exercise 1 (1 point). Prove that if a Calderón-Zygmund operator $T$ is associated to a standard kernel $K$, then its adjoint (see Section 4.3 in the notes) is also a CalderonZygmund operator, and it is associated to the standard kernel

$$
K^{t}(x, y)=\overline{K(y, x)} .
$$

$\rightarrow$ See [Paresis, Lemma 6.13]
Solution. We first real that $T^{t}$ is rub that

$$
\int T^{t}(g) \bar{f}=\int g \overline{T(f)} \quad \forall f, g \in L^{2}\left(\mathbb{R}^{n}\right) .
$$

We clack that $T^{t}$ satisfies all the properties of $d z 0$ (Definition 4.9 of the lecture notes).
(i) $T^{t}$ is of strong type $(2,2)$ : this is an immediate consequence of $T$ being a $c z o$ and, in particular, of strong type $(2,2)$.
(ii) $k^{t}(x, y):=\overline{k(y, x)}$ is a standard kernel: it readily follows from $k(x, y)$ being a standard koruce.
(iii) $T^{t}$ is associated to $K^{t}$ : Wee first observe that if $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$ ave such that $\operatorname{supp}(f) \cap \operatorname{spp}(g)=\varnothing$, then

$$
\begin{align*}
\langle T f, g\rangle_{L^{2}} & =\int T f(x) \overline{g(x)} d x=\iint K(x, y) f(y) \overline{g(x)} d y d x \\
& =\int f(y) \overline{\left(\int \overline{K(x, y)} g(x) d x\right)} d y,
\end{align*}
$$

where in the second eqseily we wed that $T$ is assccieted to $K$ and the lost eqseity follows from Fubin's theorem.
In the case of a general function $g \in L^{2}\left(\mathbb{R}^{n}\right)$ with comport
support, assume that $z \in \mathbb{R}^{n} \backslash \sup (g)$, and consider $\phi \in e_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\sup (\phi) C B(0,1)$ and $\int \phi=1$. Then, for $\varepsilon>0$ we define

$$
\phi_{\varepsilon}(y):=\phi\left(\frac{y-z}{\varepsilon}\right),
$$

so that, for $\varepsilon \operatorname{small}$ enough, $\operatorname{supp}(\phi \varepsilon) \subset B(z, \varepsilon) \subset \mathbb{R}^{m}, \sup (g)$.
Then, we apply * with $f(y)=\phi_{\varepsilon}(y)$, and obtain

$$
\int \phi_{\varepsilon}(z-y) \overline{T^{t}(y)(y)} d y=\int \phi_{\varepsilon}(z-y) \overline{\int \overline{K(x, y)} g(x)} d x d y
$$

which, for $\varepsilon \rightarrow 0$, yields

$$
T^{t}(y)(z)=\int \overline{k(x, z)} g(x) d x \text { for are. } z \in \sup (y) \text {, }
$$

which concludes the proof.

The following exercise demonstrates that the strong type (2,2) estimate in the definition of Calderón-Zygmund operators can be replaced by any other strong type ( $p, p$ ) estimate, $1<p<\infty$, and the class of operators remains the same.
Exercise 2 (1 point). Suppose that in the definition of Calderón-Zygmund operators (Definition 4.9) we replaced the strong type $(2,2)$ estimate by the strong type $(p, p)$ estimate for some $1<p<\infty$. How would you modify the proof of Theorem 4.13 to get that these "new" Calderón-Zygmund operators are weak type $(1,1)$ and strong type $(q, q), 1<q<\infty ?^{1}$ You don't have to repeat the whole proof, just the parts that change compared to $p=2$.

Solution. As suggested in the exercise, we will only fowl on the differences in the proof.
1-Proof of the week type $(1,1)$ estionste. Let $f \in L^{1}\left(\mathbb{R}^{n}\right) \cap L^{p}\left(\mathbb{R}^{n}\right)$, and let $\alpha>0$.
We apply again Calderon-Zygund decomposition
to $f$ at level $f$, which gives $f=g+b$. Hence, $T f=T g+T b$, and

$$
\left|\left\{x \in \mathbb{R}^{n}:|T f(x)|>\alpha\right\}\right| \leqslant\left|\left\{x \in \mathbb{R}^{n}:|T g(x)|>\frac{\alpha}{2}\right\}\right|+\left|\left\{x \in \mathbb{R}^{n}:|T b(x)|>\frac{\alpha}{2}\right\}\right|=: I_{g}+I_{b} .
$$

The bounds $\|g\|_{L^{1}} \leq\|f\|_{L^{1}}$ and $\|g\|_{L^{\infty}} \leq 2^{n} \alpha$ together with (the $L^{p}$-version of) Chebysher's inequsity and the strong type $(p, p)$-boundedness imply:

$$
\begin{aligned}
\left(I_{g} \leqslant \frac{\|T g\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}}{\left(\frac{\alpha}{2}\right)^{p}}\right. & \lesssim \frac{\|g\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}}{\alpha^{p}} \leqslant \frac{\|g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}^{p-1}}{\alpha^{p-1}} \frac{\|g\|_{L^{1}\left(\mathbb{R}^{n}\right)}}{\alpha} \\
& \leqslant 2^{(p-1) n} \frac{\|f\|_{L^{\prime}\left(\mathbb{R}^{n}\right)}}{\alpha} .
\end{aligned}
$$

In order to band (Ib), it is enough to repent the proof in the lecture notes, as it does not use the strony-type boundedness. In porticalor, we have:
(Ib) $<\frac{\|f\|_{L^{\prime}\left(\mathbb{R}^{n}\right)}}{\alpha}$.
2-Weak type $(1,1)$ implies strong type $(9,9)$. Similar argument (by duality) vie Marcinkieshict interpolation theorem and duality as in the lecture notes.
singular integral
Exercise 3 (2 points). Let $T$ be a Calderón-Zygmund operator, and $T_{\varepsilon}$ the associated truncated operators. Prove that for $f \in L^{1}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} T_{\varepsilon} f(x)=T f(x) \quad \text { for a.e. } x \in \mathbb{R}^{n} \tag{0.1}
\end{equation*}
$$

and for $f \in L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|T_{\varepsilon} f-T f\right\|_{L^{p}}=0 \tag{0.2}
\end{equation*}
$$

Hint: For (0.1) use the weak type $(1,1)$ estimates of $T$ and the maximal operator $T_{*}$. For (0.2) use that $\lim _{\varepsilon \rightarrow 0} T_{\varepsilon} f(x)=T f(x)$ for a.e. $x \in \mathbb{R}^{n}$ (shown in the lecture) and the dominated convergence theorem.

Solution.
Proof of $(\mathbf{0 . 1})$. We follow the proof of Proposition 5.6 in the lecture notes. For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\varepsilon>0$, we define

$$
\Lambda_{\varepsilon} f(x):=\left|T_{\varepsilon} f(x)-T f(x)\right| \text { and } \Lambda f(x):=\operatorname{limspp}_{\varepsilon \rightarrow \infty} \Lambda_{\varepsilon} f(x) \text {. }
$$

As in the notes, we assume that $f_{n}$ is a sequence in $L^{1}\left(\mathbb{R}^{n}\right)$ sit. $f_{n} \rightarrow f$ in $L^{\prime}\left(\mathbb{R}^{m}\right)$. In particular, we have

$$
\Lambda f(x) \leqslant \Lambda\left(f-f_{n}\right)(x) \text { for are. } x \in \mathbb{R}^{n} \text {. }
$$

Moreover, $\wedge g \leqslant T_{*} g+T g$ for all $g \in L^{1}\left(\mathbb{R}^{n}\right)$. Hence, for $\lambda>0$ we hare

$$
\begin{align*}
\mid\left\{x \in \mathbb{R}^{n}:\right. & \left.\lim _{\varepsilon \rightarrow 0} T_{s} f(x) \neq T f(x)\right\} \mid \\
& \leq\left|\left\{x \in \mathbb{R}^{n}: \Lambda f>\lambda\right\}\right| \leq\left|\left\{x \in \mathbb{R}^{n}: \Lambda\left(f-f_{n}\right)>\lambda\right\}\right| \\
& \leq\left|\left\{x \in \mathbb{R}^{n}: T_{*}\left(f-f_{n}\right)>\frac{\lambda}{2}\right\}\right|+\left|\left\{x \in \mathbb{R}^{n}:\left|T\left(f-f_{n}\right)\right|>\frac{\lambda}{2}\right\}\right| \\
& \leadsto \frac{\left\|f \cdot f_{n}\right\|_{L^{n}\left(\mathbb{R}^{n}\right)}}{\lambda},
\end{align*}
$$

where the last bound fallows from the weak type $(1,1)$ bends of $T_{*}$ and $T$. We take the limit in $\circledast$ for $n \rightarrow+\infty$, and we obtain (0.1).

Proof of (0.2). Let $f \in L^{P}\left(\mathbb{R}^{n}\right), 1<p<\infty$. The operators $T_{*}$ and $T$ are bounded on $L^{P}\left(\mathbb{R}^{n}\right)$, which implies that for every $\varepsilon>0$ we have

$$
\int\left|T_{\varepsilon} f-T f\right|^{p} \leqslant \int\left(\left|T_{\varepsilon} f\right|+|T f|\right)^{p} \leqslant \int\left(\left|T_{*} f\right|+|T f|\right)^{p} \lesssim \int|f|^{p}
$$

Hence, dominated comergence theorem yields that

$$
\lim _{\varepsilon \rightarrow 0}\left\|T_{\varepsilon} f-T f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left\|\lim _{\varepsilon \rightarrow 0}\left(T_{\varepsilon} f \cdot T f\right)\right\|_{L^{p}\left(\mathbb{R}^{m}\right)}=0,
$$

where the lest equality follows from the fred that $\lim _{\varepsilon \rightarrow 0} T_{\varepsilon} f(x)=T f(x)$
for every $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and a.e. $x \in \mathbb{R}^{m}$.

Exercise 4 (1 point). Show that there exists $C=C(n) \geqslant 1$ such that for any $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$ we have

$$
\begin{equation*}
C^{-1} M f(x) \leqslant M_{c} f(x) \leqslant C M f(x) \tag{*}
\end{equation*}
$$

Conclude that $M$ is of weak type $(p, p)$ with respect to a weight $w$ for some $1 \leqslant p<\infty$ if and only if $M_{c}$ is of weak type $(p, p)$ with respect to $w$.

Solution. We first prove $\left(*\right.$. Let $f \in L_{\text {eeoc }}^{1}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$. For every cube $Q \subset \mathbb{R}^{n}$ such that $x \in Q$, it holds

$$
\begin{aligned}
& \frac{1}{|Q|} \int_{Q}|f| \leq \frac{1}{|Q|} \int_{B(x, \operatorname{diam}(Q))}|f| \sim_{n} \frac{1}{|B(x, \operatorname{diam}(Q))|} \int_{B(x, \operatorname{dicam}(Q))}|f| \\
& \operatorname{def.~of~}_{M f} \leqslant M f(x) .
\end{aligned}
$$

Hence, taking the supremos over $Q_{\exists x}$ we obtain $M_{c} f(x) \lesssim_{n} M f(x)$.
Conversely, we observe that $\exists \widetilde{\sim}=\widetilde{C}(x)>1$ such that for every ball $B(x, r) \subset \mathbb{R}^{n}$ we can find a cube $Q_{x, r}$ centered ot $x$ and such that

$$
B(x, r) \subseteq Q_{x, r} \subseteq B(x, \tilde{c} r)
$$

In particular, we have $\left|Q_{x, r}\right| \sim_{n}|B(x, r)|$ and

$$
\frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y \lesssim \frac{1}{\left|Q_{x, r}\right|} \int_{Q_{x, r}}|f(y)| d y \leq M_{c} f(x)
$$

 As for as the sewed part of the statement is concerned, it is enougle to observe that the weight $\omega$ is non-negstive so * implies that, for $f \in L^{p}\left(\mathbb{R}^{n}\right)$, it holds:

$$
\omega\left(\left\{x \in \mathbb{R}^{n}: M_{c} f(x)>\lambda\right\}\right) \leqslant \omega\left(\left\{x \in \mathbb{R}^{n}: M f(x)>\omega^{-1} \lambda\right\}\right)
$$

and

$$
\omega\left(\left\{x \in \mathbb{R}^{n}: M f(x)>\lambda\right\}\right) \leqslant \omega\left(\left\{x \in \mathbb{R}^{n}: M_{c} f(x)>\omega^{-1} \lambda\right\}\right) .
$$

The bounds above conclude the proof (see Def.6.1 of the lecture notes).

Exercise 5 (1 point). Show that the $A_{1}$ condition is equivalent to

$$
M_{c} w(x) \leqslant C w(x) \quad \text { for a.e. } x \in \mathbb{R}^{n} .
$$

Solution. We recall that $\omega$ is an $A_{1}$-weight if $\exists c>0$ s.t.
for every woe $Q \subset \mathbb{R}^{n}$ it holds

$$
\frac{\omega(Q)}{|Q|} \leq \operatorname{C} \omega(x) \text { for are } x \in Q
$$

" $\left(A_{1}^{*}\right) \Rightarrow\left(A_{1}\right)$ " We first observe that, if $x \in \mathbb{R}^{m}$ is such that $\left(A_{1}^{*}\right)$ held and $Q \subset \mathbb{R}^{n}$ is a cube containing $x$, then $\left(A_{1}^{*}\right)$ gives

$$
\frac{\omega(Q)}{|Q|} \leq M_{c} \omega(x) \leq C \omega(x) \text {. }
$$

" $\left(A_{1}\right) \Rightarrow\left(A_{1}^{*}\right)$ " Assume that $\left(A_{1}\right)$ holds. Then, we define $A_{0}:=\left\{x \in \mathbb{R}^{m}: M_{c} c u(x)>c u(t)\right\}$ and we claim that $|A \theta|=0$.

Let $x \in \mathbb{R}^{n}$ be a point such thant

$$
\begin{equation*}
M_{c} \omega(x)>c \omega(x) \text {. } \tag{*}
\end{equation*}
$$

Hence, there exists a cube $Q$ s.t. $x \in Q$ and

$$
\frac{\omega(Q)}{|Q|}>c \omega(x)
$$

Furthermore

$$
c \omega(x) \stackrel{(* x)}{<} \frac{\omega(Q)}{|Q|}<c^{\left(A_{1}\right)} \operatorname{ess-inf} \omega(x)
$$

which implies that $w(x)<\underset{\substack{\text { ess-inf } \\ y \in Q}}{ } w(y)$. In particular, the set $y \in Q$
$E_{Q}:=\{x \in Q:(* *)$ holds $\}$ is Lebesgue-mull. Furthermore, for every cube $Q \subset R^{n}$ and $0<\varepsilon \ll 1$, there exists a cube $\widetilde{Q} \subset \mathbb{R}^{3}$ s.t. $Q \subset \widetilde{Q}$, its corners have rational coordinates, and $|\widetilde{Q}|<|Q|+\varepsilon$.

Furthermore, for $\varepsilon$ small enough, it holds

$$
\frac{\omega(\widetilde{Q})}{|\widetilde{Q}|} \geq \frac{1}{|Q|+\varepsilon} \omega(Q)>c \omega(x)
$$

The cubes with ration comers are countable, so we con cover to by a countable sion of cues $Q_{i}$ with the property ( $*$ ):

$$
A \subseteq \subseteq \bigcup_{i=1}^{\infty}\left(Q_{i} \cap E_{Q_{i}}\right)
$$

Hence

$$
|\theta| \leq \sum_{i=1}^{\infty}\left|Q \cap E_{Q_{i}}\right|=0
$$

which concludes the proof.

