\qquad
Singular Integral Operators
EXERCISE 2 - 07.11.2023

Exercise 1 (1 point). Show that for every Hölder continuous $\Omega: \mathbb{S}^{n-1} \rightarrow \mathbb{C}$ the kernel $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \backslash\left\{(x, x): x \in \mathbb{R}^{n}\right\} \rightarrow \mathbb{C}$ defined by

$$
K(x, y)=\frac{\Omega\left(\frac{x-y}{|x-y|}\right)}{|x-y|^{n}}
$$

is a standard kernel.
Solution. We have to check that the size and smoothers conditions hold. We assume that $\Omega \in C^{\alpha}\left(S^{n-1} ; \tau\right)$.
Size condition) Trivia: for $x, y \in \mathbb{R}^{n}, x \neq y$, it holds

$$
|K(x, y)| \leqslant \frac{\left|\Omega\left(\frac{x-y}{1 x-y,}\right)\right|}{|x-y|^{n}} \leqslant \frac{\|\Omega\|_{\infty}}{|x-y|^{n}}
$$

Smoothness conditions) K is of convolition-type, so it suffices to pave that

$$
\left|K(x, y)-K\left(x, y^{\prime}\right)\right| \leq C \cdot \frac{\left|y-y^{\prime}\right|^{\alpha}}{|y-y|^{m+\alpha}} \text {, for }|x-y|>2\left|y-y^{\prime}\right|, \mid
$$

where $C>0$ is to be determined and possibly depend on Ω, n, α. Notation: we assure that $C_{\alpha}>0$ is such that

$$
\left|\Omega(\xi)-\Omega\left(\xi^{\prime}\right)\right| \leq c_{\alpha}\left|\xi-\xi^{\prime}\right|^{\alpha} \text {, for } \xi, \xi^{\prime} \in \Phi^{m \cdot} \text {. }
$$

Now, for $\mid x-y)>2\left|y-y^{\prime}\right|$ we wite:

$$
\begin{aligned}
& \left|k(x, y)-k\left(x, y^{\prime}\right)\right| \stackrel{\text { def }}{=}\left|\frac{\Omega\left(\frac{x-y}{|x-y|^{\prime}}\right)}{|x-y|^{n}}-\frac{\Omega\left(\frac{x-y}{x-y^{\prime}}\right)}{\left|x-y^{\prime}\right|^{n}}\right| \\
& \quad \leq\left|\frac{\Omega\left(\frac{x-y}{|x-y|^{n}}\right)}{|x-y|^{n}}-\frac{\Omega\left(\frac{x-y^{\prime}}{\left|x-y^{\prime}\right|^{n}}\right)}{|x-y|^{n}}\right|+\left|\frac{\Omega\left(\frac{x-y^{\prime}}{|x-y|^{\prime}}\right)}{|x-y|^{n}}-\frac{\Omega\left(\frac{x-y}{\left|x-y^{\prime}\right|}\right)}{\left|x-y^{\prime}\right|^{n}}\right|
\end{aligned}
$$

$=:(1+2$.
(1): We first observe that

$$
\begin{aligned}
\left|\frac{x-y}{|x-y|}-\frac{x-y^{\prime}}{\left|x-y^{\prime}\right|}\right| & \leq\left|\frac{x-y}{|x-y|}-\frac{x-y^{\prime}}{\left|x-y^{\prime}\right|}\right|+\left|\frac{x-y^{\prime}}{|x-y|}-\frac{x-y^{\prime}}{\left|x-y^{\prime}\right|}\right| \\
& \leq \frac{1}{|x-y|}\left|y-y^{\prime}\right|+\frac{\left|x-y^{\prime}\right|}{|x-y|} \frac{1}{\left|x-y y^{\prime}\right|}| | x-y^{\prime}|-|x-y|| \\
& \leq 2 \frac{\left|y-y^{\prime}\right|}{|x-y|}
\end{aligned}
$$

which yields

$$
\begin{aligned}
\text { (1) } & \leq \frac{1}{|x-y|^{m}}\left|\Omega\left(\frac{x-y}{|x-y|}\right)-\Omega\left(\frac{x-y^{\prime}}{\left.\mid x-y^{\prime}\right)}\right)\right| \leq \frac{C_{\alpha}}{|x-y|^{m}}\left|\frac{x-y}{|x-y|}-\frac{x-y^{\prime}}{\left|x-y^{\prime}\right|}\right|^{\alpha} \\
& \leq \frac{2 C_{\alpha}}{|x-y|^{m}} \frac{\left|y \cdot y^{\prime}\right|^{\alpha}}{|x-y|^{\alpha}}=2 C_{\alpha} \frac{|y \cdot y|^{\alpha}}{|x-y|^{n+\alpha}} .
\end{aligned}
$$

(2). First notice that $\quad\left|x-y^{\prime}\right| \leq|x-y|+\left|y-y^{\prime}\right|<\frac{3}{2}|x-y|$

$$
\text { and } \quad\left||x-y|-\left|x-y^{\prime}\right|\right| \leq\left|y-y^{\prime}\right| \text {, }
$$

so

$$
\left||x-y|^{n}-\left|x-y^{\prime}\right|^{n}\right|=\left||x-y|-\left|x-y^{\prime}\right|\right||x-y|^{n-1}+\cdots+\left|x-y^{\prime}\right|^{n-1}\left|\approx_{n}\right| y-y^{\prime}| | x-\left.y\right|^{n-1} .
$$

Hence

$$
\begin{aligned}
& |2| \leqslant\|\Omega\|_{\infty}\left|\frac{1}{|x-y|^{m}}-\frac{1}{\left|x-y y^{\prime}\right|^{m}}\right|=\|\Omega\|_{\infty} \frac{| | x-\left.\left.y\right|^{\prime}\right|^{m}-|x-y|^{m} \mid}{\left.|x-y|^{m}|x-y|^{\prime}\right|^{m}} \leqslant\|\Omega\|_{\infty} \frac{\left|y-y^{\prime}\right||x-y|^{n-1}}{\left.|x-y|^{m}|x-y|^{\prime}\right|^{m}} \\
& \varlimsup_{\left(|x-y|>2\left|y-y^{\prime}\right|\right)}^{<}\|\Omega\|_{\infty} \frac{1}{|x-y|^{n}}(\frac{\left|y-y^{\prime}\right|}{\underbrace{|x-y|}_{<-\frac{1}{2}}}) \leqslant\|\Omega\|_{\infty} \frac{1}{|x-y|^{n}} \frac{\left|y-y^{\prime}\right|^{\alpha}}{|x-y|^{\alpha}} \text {. }
\end{aligned}
$$

Exercise 2 (1 point). Prove that if A is Lipschitz, then the Cauchy kernel

$$
K(x, y)=\frac{1}{x-y+i(A(x)-A(y))}
$$

is a standard kernel with $\delta=1$.

Solution. A is Lipschitz, so $\exists L>0$ such that

$$
|A(x)-A(y)| \leqslant L|x-y| \quad \forall x, y .
$$

Size condition) Trivial:

$$
|K(x, y)|=\frac{1}{|x-y+i(A(x)-A(y))|} \leqslant \frac{1}{\left|h_{e}(+)\right|}=\frac{1}{|x-y|}
$$

Smoothness conditions) Assume $|x-y|>2\left|y-y^{\prime}\right|$. Then

$$
\begin{aligned}
& \left|K(x, y)-K\left(x, y^{\prime}\right)\right|=\left|\frac{1}{x-y+i(A(x)-A(y))}-\frac{1}{x-y^{\prime}+i(A(x) \cdot A(y))}\right| \\
& =\frac{\left|y-y^{\prime}-i\left(A\left(y^{\prime}\right)-A(y)\right)\right|}{\mid((x \cdot y)+i(A(x)-A(y)))\left(\left(x-y^{\prime}\right)+i\left(A(x)-A\left(y^{\prime}\right)\right) \mid\right.}=: \frac{|N(x, y)|}{|D(x, y)|} .
\end{aligned}
$$

We estimate N and D separtely.

$$
|N(x, y)| \leqslant\left|y-y^{\prime}\right|+\left|A\left(y^{\prime}\right)-A(y)\right| \leqslant(L+1)\left|y-y^{\prime}\right| .
$$

Noes, we estimate the denominator:

$$
\begin{aligned}
|D(x, y)|^{-1} & \leqslant \frac{1}{\left((x-y)+i(A(x)-A(y))| |\left(x-y^{\prime}\right)+i\left(A(x)-A\left(y^{\prime}\right)\right) \mid\right.} \leqslant \frac{1}{|x-y|\left|x-y^{\prime}\right|} \\
& \lesssim \frac{1}{|x-y|^{2}}
\end{aligned}
$$

This proves the first smoothness condition, and the reand is analogous.

Exercise 3 (2 points). If T is a Calderón-Zygmund operator such that it is associated with two kernels K_{1} and K_{2}, that is, for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with compact support

$$
T f(x)=\int K_{1}(x, y) f(y) d y=\int K_{2}(x, y) f(y) d y \quad \text { for } x \notin \operatorname{supp} f
$$

then $K_{1}=K_{2}$ a.e.
Hint: Assume that the claim is false. You should find a positive measure set $E \subset \mathbb{R}^{n}$ and a point $x \notin E$ such that $K_{1}(x, y)-K_{2}(x, y)$ has a fixed sign for $y \in E$.

Solution. We assume aithat loss of generality that k_{1}, k_{2} ore real-vdved (otherwise ae corgue with the real or imsainory parts).
Let $\tilde{E}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x \neq y, \quad k_{1}(x, y)-k_{2}(x, y) \neq 0\right\}$.
We argue by contradiction, and assume that $(*$ does not hold. This implies that $|\tilde{E}|>0$. In particular, at least one between

$$
\tilde{E}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x \neq y, \quad \operatorname{sgn}\left(k_{1}(x, y)-k_{2}(x, y)\right)= \pm 1\right\}
$$

has positive mecosne. Without loss of generality, we assume that $\mathcal{L}^{2 n}\left(\tilde{E}^{+}\right)>0$ and, for $x \in \mathbb{R}^{n}$, we denote $\tilde{E}_{x}^{+}:=\left\{y \in \mathbb{R}^{n}:(x, y) \in \tilde{E}^{+}\right\}$. (Lebesgue measure) Fubini's theorem implies that $\exists x$ st. $\mathcal{L}^{m}\left(\tilde{E}_{x}^{+}\right)>0$.
Furthermore, $\exists 0<r<R$ s.t. $\left(\widetilde{E}_{x}^{+} \cap B(x, R)\right) \backslash B(x, r)=: E$ hrs positive measure. Observe that \bar{E} is compere and $x \notin \bar{E}$.

Hence, for $f:=x_{E}$ we lore that

$$
\int k_{1}(x, y) f(y) d y>\int k_{2}(x, y) f(y) d y
$$

which yields a contradiction.

Recall that $\mathcal{D}\left(\mathbb{R}^{n}\right)$ denotes the family of dyadic cubes. The notation $A \lesssim B$ stands for "there exists a dimensional constant $C \geqslant 1$ such that $A \leqslant C B$ " and $A \sim B$ means $A \lesssim B \lesssim A$. Given $Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ we write $C Q$ to denote the cube with the same center as Q and with sidelength $C \ell(Q)$.
Exercise 4 (2 point). Suppose that $\Omega \subsetneq \mathbb{R}^{n}$ is an open set. Let $\mathcal{W} \subset \mathcal{D}\left(\mathbb{R}^{n}\right)$ be the family of maximal ${ }^{1}$ cubes contained in Ω and satisfying $10 Q \cap \Omega^{c}=\varnothing$. Prove that
(i) the cubes in \mathcal{W} are pairwise disjoint, and $\bigcup_{Q \in \mathcal{W}} Q=\Omega$,
(ii) for every $Q \in \mathcal{W}$ we have $\ell(Q) \sim \operatorname{dist}\left(Q, \Omega^{c}\right)$,
(iii) for every $P, Q \in \mathcal{W}$ with $3 P \cap 3 Q \neq \varnothing$ we have $\ell(P) \sim \ell(Q)$.
(iv) for every $Q \in \mathcal{W}$ we have $\#\{P \in \mathcal{W}: 3 P \cap 3 Q \neq \varnothing\} \lesssim 1$.

The family \mathcal{W} is called the Whitney decomposition of Ω, and it has many applications in analysis.

Solution. For $Q \in D\left(\mathbb{R}^{n}\right)$, we denote $D(Q):=\left\{Q^{\prime} \in O\left(\mathbb{R}^{n}\right): Q^{\prime} \leq Q\right\}$.
(i) We assume that $Q, Q^{\prime} \in W^{O}$ are such that $Q \cap Q^{\prime} \neq \varnothing$. Then, by the properties of $D\left(\mathbb{R}^{m}\right)$, either $Q \subseteq Q^{\prime}$ or $Q^{\prime} \subseteq Q$. By maximslity of wees in W, this implies $Q=Q^{\prime}$.

We are left with the proof of the identity

$$
\bigcup_{Q \in \mathcal{W}} Q=\Omega \text {. }
$$

The infusion " \subseteq " is trivial by definition of Q. Conversely, the $x \in \Omega$.
The set Ω is open, so $\exists r>0$ s.t. $B(x, r) \subset \Omega$. In particular, there exists $\widetilde{Q}_{x} \in D\left(\mathbb{R}^{n}\right)$ such that $x \in \widetilde{Q}_{x}$ and $10 \widetilde{Q}_{x} \subset 100 \widetilde{Q}_{x} \subset \Omega$.

In priticular, $10 \widetilde{Q}_{x} \cap \Omega^{c}=\varnothing$. Hence, $\exists Q_{x} \in W$ (nsimal) such that $x \in Q_{x}$, alich proves the inclusion " 2 " in \circledast.
(ii) Let $Q \in \mathbb{W}$.

On the one hand, since $10 Q \cap \Omega^{c}=\varnothing$, it holds:

$$
\operatorname{dist}\left(Q, \Omega^{c}\right) \geq \operatorname{dist}(Q, \partial(10 Q)) \approx \ell(Q)
$$

Conversely, we rue by contradiction and assume that for every $j \exists Q_{j}$ s.t.

$$
\ell\left(Q_{j}\right)<\frac{1}{j} \operatorname{dist}\left(Q_{j}, \Omega^{c}\right) . \quad(* *)
$$

Let \tilde{Q}_{j} be the dyadic pret of Q_{j} (i.e. $\tilde{Q}_{j} \in P\left(\mathbb{R}^{n}\right)$ is the unique che sit. $l\left(\widetilde{Q}_{j}\right)=2 \ell\left(Q_{j}\right)$ and $\left.Q_{j} \subset \widetilde{Q}_{j}\right)$, observe that

$$
\operatorname{dist}\left(\partial\left(10 \tilde{Q}_{j}\right), Q_{j}\right) \leq c \ell\left(Q_{j}\right)
$$

for some $\mathrm{C}>0$. Hence, for $j>G$, we hare

$$
\begin{aligned}
\operatorname{dist}\left(10 \widetilde{Q}_{j}, \Omega^{c}\right) & \geq \operatorname{dist}\left(Q_{j}, \Omega^{c}\right)-\operatorname{dist}\left(\partial\left(10 \widetilde{Q}_{j}\right), Q_{j}\right) \\
& \geq(\dot{j}-c) \ell\left(Q_{j}\right)>0 \\
& \approx \sim
\end{aligned}
$$

In particulss, $10 \widetilde{Q}_{j} \cap \Omega^{c}=\varnothing$, which contradicts the maximlity of $Q_{j} \in W$.
(iii) Let $P, Q \in \mathbb{O}$ be such that $3 P \cap 3 Q \neq \varnothing$.

If $\ell(Q)=\ell(P)$, here is nothing to prove. Assume w.l.o.y. that $\ell(P)>\ell(Q)$. All ae have to prove is that $\ell(P) \approx \ell(Q)$. It is enough to observe that $3 P \cap 3 Q \neq \varnothing$ \& $\ell P)>\ell(Q) \Rightarrow 9 P \subset Q$. Hence

$$
\ell(Q) \sim \operatorname{dist}\left(Q, \Omega^{c}\right) \geq \operatorname{dist}\left(9 P, \Omega^{c}\right) \sim \ell(P) .
$$

(ii)
(iv) Let $Q \in W$. If $P \in W$ is such that $3 P \cap 3 Q \neq 0$, by $(i i i) \quad \exists \quad C=C(n)>1$ sud e that

$$
C^{-1} \ell(P) \leqslant \ell(Q) \leqslant C \ell(P) .
$$

Hence, $P \subseteq \widetilde{G} Q$ for some $\widetilde{\mathcal{J}}=\widetilde{C}(n)>1$.
This finishes the proof, because:

$$
\begin{aligned}
& \{P \in W: 3 P \cap 3 Q \neq \varnothing\} \\
& \leq\left\{P \in D\left(\mathbb{R}^{n}\right): P \subseteq \widetilde{C} Q \text { and } a^{-1} l(P) \leq l(Q) \leq d l(P)\right\}=: A_{Q},
\end{aligned}
$$

and it is easy to see that $\# A_{Q} ふ_{n} 1$.

