EXERCISE 2 - 07.11.2023

SINGULAR INTEGRAL OPERATORS

Exercise 1 (1 point). Show that for every Hölder continuous $\Omega : \mathbb{S}^{n-1} \to \mathbb{C}$ the kernel $K : \mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, x) : x \in \mathbb{R}^n\} \to \mathbb{C}$ defined by

$$K(x,y) = \frac{\Omega\left(\frac{x-y}{|x-y|}\right)}{|x-y|^n}$$

is a standard kernel.

Solution. We have to deck that the size and smoothers and it ions
hold. We assume that
$$\mathcal{D} \in \mathbb{C}^{d}(\mathbb{S}^{n-1}; \mathbb{C})$$
.
Size condition) Trainial: for $x_{i}y \in \mathbb{R}^{n}$, $x \neq y$, it holds
 $|K(x,y)| \leq \frac{|\mathcal{D}(\frac{|x-y|}{|x-y|)}|}{|x-y|^{m}} \leq \frac{||\mathcal{D}||_{\infty}}{|x-y|^{m}}$.
Smoothness conditions) K is of convultion-type, so it suffices
to prove that
 $|K(x,y)-K(x,y')| \leq C_{i} \cdot \frac{|y-y'|^{d}}{|y-y|^{m+d}}$, for $|x-y|>2|y-y'|$,
where $d > 0$ is to be determined and passibly depend on \mathcal{D} ,
 m, d . Notation: we are that $d_{d > 0}$ is such that
 $|\mathcal{D}(\mathfrak{T}) \cdot \mathcal{D}(\mathfrak{T}')| \leq C_{d} |\mathfrak{T} \cdot \mathfrak{T}'|^{d}$, for $\xi, \xi \in \mathbb{S}^{n}$.
Now, for $|x-y| > 2(y-y')|$ are write:
 $|K(x,y)-K(x,y')| \frac{del}{del} = \frac{\mathcal{D}(\frac{x-y}{|x-y|})}{|x-y|^{m}} - \frac{\mathcal{D}(\frac{x-y'}{|x-y|})}{|x-y|^{m}}|$

Exercise 2 (1 point). Prove that if A is Lipschitz, then the Cauchy kernel

$$K(x,y) = \frac{1}{x - y + i(A(x) - A(y))}$$

is a standard kernel with $\delta = 1$.

$$\frac{Size \text{ condition}}{|\kappa(x,y)|} = \frac{1}{|x-y+i(A(x)-A(y))|} \leq \frac{1}{|Be(+)|} = \frac{1}{|x-y|},$$

$$\frac{Smoothneys \text{ conditions}}{Smoothneys \text{ conditions}} \quad Assume \quad |x-y| > 2(y-y'). \text{ Then}$$

$$\frac{|\kappa(x,y)-\kappa(x,y')|}{|x-y+i(A(x)-A(y))|} = \frac{1}{|x-y+i(A(x)-A(y))|} - \frac{1}{|x-y'+i(A(x)-A(y))|}$$

$$= \frac{|y-y'-i(A(y')-A(y))|}{|(x-y')+i(A(x)-A(y'))|} = : \frac{|N(x,y)|}{|D(x,y)|}.$$

We estimate N and D separately.

$$|N(x,y)| \leq |y-y'| + |A(y') - A(y)| \leq (L+1)|y-y'|.$$

$$A \ Lipschitz$$

Now, we estimate the denominator:

$$\frac{|D(x,y)|^{-1}}{\left(\frac{x+y}{y}+i(A(x)-A(y))\right|\left(\frac{x+y'+i(A(x)-A(y'))}{(x+y')+i(A(x)-A(y'))}\right)} \leq \frac{1}{|x+y|(x+y')|}$$

$$\lesssim \frac{1}{|x+y|^2}$$
This proves the first smoothers condition, and the stand is embryon s.

3

Exercise 3 (2 points). If T is a Calderón-Zygmund operator such that it is associated with two kernels K_1 and K_2 , that is, for all $f \in L^2(\mathbb{R}^n)$ with compact support

$$Tf(x) = \int K_1(x, y)f(y) \, dy = \int K_2(x, y)f(y) \, dy \qquad \text{for } x \notin \text{supp } f,$$

$$K_2 \neq 0$$

then $K_1 = K_2$ a.e.

Hint: Assume that the claim is false. You should find a positive measure set $E \subset \mathbb{R}^n$ and a point $x \notin E$ such that $K_1(x, y) - K_2(x, y)$ has a fixed sign for $y \in E$.

Solution. We assume eithat less of generality that
$$K_1, K_2$$
 are reel-valued
(otherwise as argue with the real or insginary parts).
Let $\tilde{E} := \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m : x \neq y, K_n(x,y) - K_n(x,y) \neq 0\}$.
We argue by contradiction, and secure that \mathbb{E} does not hold. This implies
that $|\tilde{E}| > 0$. In particular, at least one between
 $\tilde{E}^{\frac{1}{2}} = \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m : x \neq y, sgn(K_n(x,y) - K_n(x,y)) = \pm 1\}$
has positive measure. Without loss of generality, we assume that $\int_{0}^{10} (\tilde{E}^+) > 0$ and,
for xeR^m, we denote $\tilde{E}^+_{x} := \{y \in \mathbb{R}^m : (x,y) \in \tilde{E}^+\}$. (Letergue measure)
Furthin's theorem implies that $\exists x \text{ st.} d^m(\tilde{E}^+_{x}) > 0$.
Furthormore, $\exists 0 < r < R$ s.t. $(\tilde{E}^+_{x} \cap B(x, R)) \setminus B(x, r) = :E$ has paritive
measure. Observe that E is compact and $x \notin E$.
Hence, for $f := K_E$ are hare that
 $\int K_n(x < y) f(y) dy > \int K_2(x, y) f(y) dy$,
unlich yields a contradiction.

Recall that $\mathcal{D}(\mathbb{R}^n)$ denotes the family of dyadic cubes. The notation $A \leq B$ stands for "there exists a dimensional constant $C \geq 1$ such that $A \leq CB$," and $A \sim B$ means $A \leq B \leq A$. Given $Q \in \mathcal{D}(\mathbb{R}^n)$ we write CQ to denote the cube with the same center as Q and with sidelength $C\ell(Q)$.

Exercise 4 (2 point). Suppose that $\Omega \subsetneq \mathbb{R}^n$ is an open set. Let $\mathcal{W} \subset \mathcal{D}(\mathbb{R}^n)$ be the family of maximal¹ cubes contained in Ω and satisfying $10Q \cap \Omega^c = \emptyset$. Prove that

- (i) the cubes in \mathcal{W} are pairwise disjoint, and $\bigcup_{Q \in \mathcal{W}} Q = \Omega$,
- (ii) for every $Q \in \mathcal{W}$ we have $\ell(Q) \sim \operatorname{dist}(Q, \Omega^c)$,
- (iii) for every $P, Q \in \mathcal{W}$ with $3P \cap 3Q \neq \emptyset$ we have $\ell(P) \sim \ell(Q)$.
- (iv) for every $Q \in \mathcal{W}$ we have $\#\{P \in \mathcal{W} : 3P \cap 3Q \neq \emptyset\} \leq 1$.

The family \mathcal{W} is called *the Whitney decomposition* of Ω , and it has many applications in analysis.

Solution. For
$$Q \in D(\mathbb{R}^{n})$$
, we denote $D(Q) := \{Q \in D(\mathbb{R}^{n}): Q' \leq Q\}$.
(i) We assume that $Q, Q' \in W$ are such that $Q \cap Q' \neq Q$. Then, by
the proporties of $D(\mathbb{R}^{n})$, either $Q \subseteq Q'$ or $Q' \subseteq Q$. By maximality f
where in W , this implies $Q = Q'$.
We are left with the proof of the identity $Q = D$. If
the indusion " \subseteq " is trivial by definition of Q . Conversely, the $x \in D$.
The set D is open, so $\exists r > st$. $B(x_{1}r) \subset D$. In particular, there
exists $\tilde{Q}_{x} \in D(\mathbb{R}^{n})$ such that $x \in \tilde{Q}_{x}$ and $io \tilde{Q}_{x} \subset 100 \tilde{Q}_{x} \subset D$.
In particular, $io \tilde{Q}_{x} \cap D' = g$. Hence, $\exists Q_{x} \in W$ (maximal) such
that $x \in Q_{x}$, which proves the inclusion " 2 " in Q .
(ii) Let $Q \in W$.
On the one hand, since $io Q \cap D' = g$, it holds:
 $dist(Q, D') \ge dist(Q, Q(io Q)) \approx L(Q)$.
(onversely, we argue by contradiction and assume that for every $j \equiv Q_{j} s.t$.
 $L(Q_{j}) < \frac{1}{j}$ dist (Q_{j}, D^{c}) . (**)

but
$$\hat{Q}_{j}$$
 be the dysalic prodit of Q_{j} (i.e. $\hat{Q}_{j} \in O(\mathbb{R}^{n})$ is the unique
(de st $l(\hat{Q}_{j}) = l(Q_{j})$ and $Q_{j} \subset \hat{Q}_{j}$), obscrue that
 $dist(3(10\tilde{Q}_{j}), Q_{j}) \leq Cl(Q_{j})$
for some $C > 0$. Hence, for $j > C$, all have
 $dist(10\tilde{Q}_{j}, \Omega^{-}) \geq dist(Q_{j}, \Omega^{-}) - dist(3(10\tilde{Q}_{j}), Q_{j})$
 $\geq (j - C) l(Q_{0}) > 0$
In porticular, $10\tilde{Q}_{j} \cap \Omega^{-} = \emptyset$, which contradicts the maximality of $Q_{j} \in \mathcal{V}$.
(iii) Let $P, Q \in \mathcal{W}$ be such that $3P \cap 2Q \neq \emptyset$.
If $l(Q) \geq l(P)$, there is unling to prove. Assume w.l.og. that $l(P) > lQ_{2}$.
All we have to prove is that $l(P) \leq l(Q)$. It is enough to observe
that $3P \cap 3Q \neq \emptyset$ $k l(P) > l(Q) \Rightarrow 4P \subset Q$. Hence
 $l(Q) \sim dist(Q, \Omega^{-}) \geq dist(4P, \Omega^{-}) \sim l(P)$.
(iii)
Let $Q \in \mathcal{W}$. If $P \in \mathcal{W}$ is such that $3P \cap 3Q \neq 0$, by (iii) $\exists C = C(m) > l$
 $dist (R \in \mathcal{W})$. If $P \in \mathcal{Q}$ is some $\tilde{C} = \tilde{C}(m) > 1$.
This finishes the proof, horeve :
 $\{P \in \mathcal{W}: 3P \cap 3Q \neq \emptyset\}$
 $\leq \{P \in D(\mathbb{R}^{m}): P \subseteq \tilde{C}Q$ and $C' l(P) \leq l(Q) \leq Cl(P)$.
 $i \leq P \in D(\mathbb{R}^{m}): P \subseteq \tilde{C}Q$ and $C' l(P) \leq l(Q) \leq Cl(P)$.
 $i \leq P \in D(\mathbb{R}^{m}): P \subseteq \tilde{C}Q$ and $C' l(P) \leq l(Q) \leq Cl(P)$.
 $i \leq Q$.