Singular Integral Operators
EXERCISE 1 - 31.10.2023

Exercise 1 (1 point). Let $f \in \mathcal{S}(\mathbb{R})$. Show that $H f \in L^{1}(\mathbb{R})$ if and only if $\int_{\mathbb{R}} f(y) d y=0$.
Hint: Modify the proof of Lemma 3.5 from the lecture notes to estimate the asymptotic of $x^{2} \cdot H f(x)$ as $|x| \rightarrow \infty$.

Solution. Let $f \in \mathcal{S}(\mathbb{R}), x \in \mathbb{R}$ such that $|x|>100$, and $0<\varepsilon \ll 1$.
Aim: We went to prove that

$$
\lim _{|x| \rightarrow \infty}\left|x^{2} \operatorname{H}_{\varepsilon} f(x)-\frac{x}{\pi} \int_{\mathbb{R}} f(x-y) d y\right| \rightarrow 0, \varepsilon \rightarrow 0,
$$

which shoes that $\quad \lim _{|x| \rightarrow \infty}\left|x^{2} H f(x)-\frac{x}{\pi} \int_{\mathbb{R}} f(x-y) d y\right|=0$
Before proving Ψ^{*}, we obsene that $F^{* *}$ concludes the exercise: it is enough to argue as in Corollary 3.6 of the lecture notes.
Hence, we turn to the proof of $*$. First, we conte

$$
\begin{aligned}
\pi x^{2} \cdot H_{\varepsilon} f(x)= & x^{2} \int_{|y|>\varepsilon} \frac{f(x-y)}{y} d y=\int_{\varepsilon<|y|<\frac{|x|}{2}} \frac{x^{2}}{} \frac{[f(x-y)-f(x)]}{y} d y \\
& +x^{2} \int_{|x| \leq|y|<2|x|} \frac{f(x-y)}{y} d y \\
= & \int_{1, \varepsilon} \frac{f(x-y)}{y} d y \\
= & I_{1 y \mid \geq 2(x \mid}+I_{2}+I_{3}
\end{aligned}
$$

Hence, we estimate the terms separately.
(1.6) First observe that, for $\xi \in B(x, y)$ we hare:

$$
\begin{aligned}
\xi \in B(x, y) \Rightarrow|\xi| & \leq|x|+|y| \leq \frac{3}{2}|x| \\
|\xi| & \geq|x|-|y|>\frac{|x|}{2}
\end{aligned}
$$

Thus:

$$
I_{1, \varepsilon} \leqslant \int_{\varepsilon<|y|<\frac{\mid x}{2}} x^{2} \frac{|f(x-y)-f(x)|}{|y|} d y \leqslant|x|^{2} \operatorname{spp}_{\frac{\mid x}{2}<|\xi|<\frac{3}{2}|x|}\left|f^{\prime}(\xi)\right|
$$

so $\quad I_{1, \varepsilon} \rightarrow 0$ uniformly on $\varepsilon>0$ for $(x) \rightarrow \infty$ because $f \in J(\mathbb{R})$.
(I3) It is enogh to observe that

$$
|y| \geq 2|x| \Rightarrow|x-y| \geq|x-y|-|x| \geq|x|
$$

So:

$$
\left|I_{3}\right| \leq \int_{|y| \geq 2|x|}|x|^{2} \frac{|f(x-y)|}{|y|} d y \leq \int_{|x-y| \geq|x|}|x| \quad|f(x-y)| d y,
$$

which converges to 0 as $|x| \rightarrow+\infty$ because $f \in S(\mathbb{R})$
(I2) We wite

$$
\begin{aligned}
& \left|I_{2}-x \int_{\mathbb{R}} f(x-y) d y\right|= \\
\leq & \left|\int_{\frac{|x|}{2} \leq|y|<2|x|}\left(\frac{x^{2}}{y} f(x-y)-x f(x-y)\right) d y\right|+\left|x \int_{|y| \frac{|x|}{2} \vee|y| \geq 2|x|} f(x-y) d y\right| \\
= & A(x)+B(x) . \\
& \text { Now, } \left.B(x) \leq|x| \int_{|y|<\frac{|x|}{2}} \vee \right\rvert\, y(>2|x|
\end{aligned} \quad|f(x-y)| d y \leq|x| \int_{|\xi|>\frac{|x|}{2}}|f(\xi)| d \xi .
$$

So, $B(x) \rightarrow 0$ as $|x| \rightarrow+\infty$ because $f \in \rho(\mathbb{R})$.
Finally,

$$
|A(x)| \leq|x| \int_{\frac{|x|}{2} \leq|y|<2|x|} \frac{|x-y|}{|y|}|f(x-y)| d y<\int_{\left.\frac{|x|}{2}|\leqslant|z| \leq 2| x \right\rvert\,}|z||f(z)| d z,
$$

So $|A(x)| \rightarrow 0$ as $|x| \rightarrow+\infty$ again because $f \in S(\mathbb{R})$. Hence, we gather the estimates we performed so for and we obtain:

$$
\begin{gathered}
\pi x^{2} H f(x)-x \int_{\mathbb{R}} f(x \cdot y) d y\left|\leqslant\left|I_{1, \varepsilon}\right|+|A(x)|+|B(x)|+\left|I_{3}\right| \text {, for }\right| x \mid \rightarrow \infty \underbrace{\downarrow}_{0} \underbrace{\downarrow}_{0} \underbrace{\downarrow}_{0}
\end{gathered}
$$

which proves (*) and, hence, salves the exercise..
Recall that in the lecture we defined a tempered distribution $T_{0} \in \mathcal{S}^{\prime}(\mathbb{R})$ by

$$
\left\langle T_{0}, f\right\rangle:=-H f(0)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \int_{|y|>\varepsilon} \frac{f(y)}{y} d y
$$

Exercise 2 (2 point). Show that the tempered distribution $\widehat{T_{0}}$ is given by a function, and that $\widehat{T_{0}}(\xi)=-i \operatorname{sgn}(\xi)$.

Hints:
(i) Let $K_{\varepsilon}(y)=\frac{1}{y} \mathbf{1}_{|y|>\varepsilon}$, so that $\left\langle T_{0}, f\right\rangle=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left\langle K_{\varepsilon}, f\right\rangle$ for all $f \in \mathcal{S}(\mathbb{R})$. Consider $Q_{\varepsilon}(y)=\frac{y}{y^{2}+\varepsilon^{2}}$ and show that

$$
\lim _{\varepsilon \rightarrow 0}\left(K_{\varepsilon}-Q_{\varepsilon}\right)=0 \quad \text { in } \mathcal{S}^{\prime}(\mathbb{R})
$$

that is, $\lim _{\varepsilon \rightarrow 0}\left\langle K_{\varepsilon}-Q_{\varepsilon}, f\right\rangle=0$ for all $f \in \mathcal{S}(\mathbb{R})$.
(ii) Using the above, justify rigorously that $\widehat{T_{0}}=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \widehat{Q_{\varepsilon}}$, in the sense of distributions.
(iii) Show that $Q_{\varepsilon}(x)=\mathcal{F}^{-1}\left(-\pi i \operatorname{sgn}(\xi) e^{-2 \pi \varepsilon|\xi|}\right)(x)$. Conclude that $\widehat{T_{0}}$ is given by a function, and that $\widehat{T_{0}}(\xi)=-i \operatorname{sgn}(\xi)$.
Solution.
(i) Let Q_{ε} and k_{ε} be as in the statement, and let $f \in \mathcal{S}(\mathbb{R})$.

We ante:

$$
\begin{aligned}
&\left|\left\langle k_{\varepsilon}-Q_{\varepsilon, f}\right\rangle\right| \stackrel{d o f}{=}\left|\int\left(\frac{y}{y^{2}+\varepsilon^{2}}-\frac{\mathbb{1}_{|y|\rangle \varepsilon}(y)}{y}\right) f(y) d y\right| \\
&=\left|\int_{|y|>\varepsilon}\left(\frac{y}{y^{2}+\varepsilon^{2}}-\frac{1}{y}\right) f(y) d y+\int_{|y| \leqslant \varepsilon} \frac{y}{y^{2}+\varepsilon^{2}} f(y) d y\right| \\
& \leqslant\left|\int_{|y|>\varepsilon}\left(\frac{y}{y^{2}+\varepsilon^{2}}-\frac{1}{y}\right) f(y) d y\right|+\left|\int_{|y| \leqslant \varepsilon} \frac{y}{y^{2}+\varepsilon^{2}} f(y) d y\right|=: \mathbb{1}_{\varepsilon}^{1}+2_{\varepsilon}^{(2)}
\end{aligned}
$$

$$
\text { (1) })_{\varepsilon}\left|\int_{|y|>\varepsilon} \frac{y^{2}-y^{2}-\varepsilon^{2}}{y\left(y^{2}+\varepsilon^{2}\right)} f(y) d y\right|=\varepsilon^{2} \int_{y\left(y\left(y^{2}+\varepsilon^{2}\right)\right.} f(y) d y
$$

Here (1) $\varepsilon \rightarrow 0$ as $\varepsilon \rightarrow 0$ by dominated comergence theorem and observing that

$$
\int_{|z|\rangle \mid} \frac{1}{z\left(z^{2}+1\right)} f(0) d t=0 \quad \text { by centisymmetry. }
$$

$$
\begin{gathered}
(2)_{\varepsilon}=\left|\int_{|y| \leq \varepsilon} \frac{y}{y^{2}+\varepsilon^{2}} f(y) d y\right|_{\prod}=\left|\int_{|t| \leq 1} \frac{\varepsilon^{2} z}{\varepsilon^{2} z^{2}+\varepsilon^{2}} f(\varepsilon z) d z\right| \\
\begin{array}{c}
y=\varepsilon z \\
d y=\varepsilon d z
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
\left.=\int_{|z| \leq 1} \frac{|z|}{t^{2}+1} \int f(\varepsilon z) \right\rvert\, d z \Rightarrow & \text { we can apply D.c.T. again and } \\
& \text { obtain that (2z) } \rightarrow 0 \text { as } \varepsilon \searrow 0,
\end{aligned}
$$

together with the foe that $\int_{\mid z \leq 1} \frac{z}{z^{2}+1} f(0) d z=0$.

Let $f \in \mathcal{f}(\mathbb{R}) .\left\langle\widehat{T_{0}}, f\right\rangle \stackrel{\text { def. }}{=}\left\langle T_{0}, \hat{f}\right\rangle=\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left\langle k_{\varepsilon}, \hat{f}\right\rangle=$

$$
\begin{aligned}
& =\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left\langle Q_{\varepsilon}, \hat{f}\right\rangle+\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left\langle Q_{\varepsilon}-\hat{K_{\varepsilon}} \hat{f}\right\rangle \\
& =\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left\langle Q_{\varepsilon}, \hat{f}\right\rangle \stackrel{\operatorname{def}}{=} \frac{1}{\pi} \lim _{\varepsilon \rightarrow 0}\left\langle\widehat{Q_{\varepsilon}}, f\right\rangle .
\end{aligned}
$$

iii We proceed with the calculation.

$$
y^{-1}\left(\cdot \pi^{i} \operatorname{sgn}(\xi) \exp (-2 \pi \varepsilon(\xi \mid))\right.
$$

$\stackrel{\text { Four. inversion }}{\stackrel{1}{=}-i \pi} \int_{\mathbb{R}} \operatorname{sgn}(\xi) \exp (-2 \pi \varepsilon|\xi|) \exp (2 \pi i x \cdot \xi) d \xi$
sg n

$$
\begin{aligned}
& =\pi i \int_{-\infty}^{0} \exp (2 \pi(\varepsilon+i x) \xi) d \xi-\pi i \int_{0}^{+\infty} \exp (2 \pi(-\varepsilon+i x) \xi) d \xi \\
& =\pi i\left(\frac{1}{2 \pi(\varepsilon+i x)}+\frac{1}{2 \pi(-\varepsilon+i x)}\right)=\pi i \frac{2 i x}{2 \pi\left(-x^{2}-\varepsilon^{2}\right)}=\frac{x}{x^{2}+\varepsilon^{2}}
\end{aligned}
$$

$=Q_{\varepsilon}(x) \Rightarrow \mathcal{G}^{-1}(\#)$ is given by a function.
by injectivity of 7^{-1} an $J^{\prime}(\mathbb{R})$.
We con conduce observing that $\lim _{\varepsilon \rightarrow 0} \widehat{Q}_{\varepsilon}(\xi)=-i \operatorname{sgn}(\xi)$.

Recall that an operator $T: \mathcal{S}(\mathbb{R}) \rightarrow L^{q}(\mathbb{R})$ is said to be of strong type (p, q) if there exists a constant $C \in(0, \infty)$ such that $\|T f\|_{L^{q}} \leqslant C\|f\|_{L^{p}}$.
Exercise 3 (1 point). Let $f=\mathbf{1}_{[0,1]}$. Show that for $x \in \mathbb{R} \backslash\{0,1\}$

$$
\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon} \frac{f(y)}{x-y} d y=\log \left|\frac{x}{x-1}\right| .
$$

Conclude that the Hilbert transform is neither of strong type (∞, ∞) nor of strong type $(1,1)$.

Solution. For $\varepsilon \in[0,1)$ and $x \neq 0,1$, and define

$$
F_{\varepsilon}(x):=\int_{|x-y|\rangle \xi} \frac{x_{[0,3]}}{x-y} d y \quad \text { and } \quad F(x):=\log \left|\frac{x}{x-1}\right|
$$

Now, we split cases depending on the position of x.

Case 1. Assume that $x \in(0, \infty)$ and that $\varepsilon \in(0,1 \times 1)$.
We lase

$$
F_{\varepsilon}(x)=\int_{|y-x|>\varepsilon} \frac{x_{(0,1)}(y)}{x-y} d y=\int_{0}^{1} \frac{1}{x-y} d y=F(x) \quad \forall \varepsilon \in(0,|x|)
$$

Case 2. Assume thant $x \in(0,1)$, and that $\varepsilon>0$ is s.t. $[x-\varepsilon, x+\varepsilon] \subset[0,1]$. It holds:

$$
\begin{aligned}
F_{\varepsilon}(x) & =\int_{|y-x|>\varepsilon} \frac{x_{[0,3}(y)}{x-y} d y=\int_{0}^{x-\varepsilon} \frac{1}{x-y} d y+\int_{x+\varepsilon}^{1} \frac{1}{x-y} d y \\
& =\log \frac{|x|}{\varepsilon}+\log \frac{\varepsilon}{|x-1|}=\log \frac{|x|}{|x-1|}=F(x) \quad \forall \varepsilon \text { us above. }
\end{aligned}
$$

Case 3. Andogas to Case 1.

Fimelly, we notice thet:

$$
\log \left|\frac{x}{x-1}\right|=\log |x|-\log |x-1|
$$

It's evident thert $F \notin L^{\infty}(\mathbb{R})$.

- Let's show that $F \notin L^{1}(\mathbb{R})$. For $|x| \leqslant \frac{1}{10}$, we prove

$$
|F(x)| \geq|\log | x| |-|\log | x-1| | \geq|\log | x| |-c \Rightarrow F \notin L^{1}(\mathbb{R}) .
$$

$\leq C$ (locse smoothers of $\log |x-1|$ wercy from $x=1$)

Recall that the essential support of a locally integrable function f is the smallest closed set, denoted by $\operatorname{ess} \operatorname{supp}(f)$, such that $f=0$ a.e. on the complement of $\operatorname{ess} \operatorname{supp}(f)$.
Exercise 4 (1 point). Show that if $f \in L^{2}(\mathbb{R})$, then for a.e. $x \notin \operatorname{ess} \operatorname{supp}(f)$

$$
H f(x)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

Hint: You may use the fact that for $f_{n}(x):=\left(f \mathbf{1}_{B(0, n)}\right) * \varphi_{1 / n}(x) \in C_{c}^{\infty}(\mathbb{R})$ we have $f_{n} \rightarrow f$ in $L^{2}(\mathbb{R})$. Here φ_{ε} is a smooth mollifier: $\varphi_{\varepsilon}(x)=\varepsilon^{-1} \varphi(x / \varepsilon), \varphi \in C_{c}^{\infty}(\mathbb{R})$, $\mathbf{1}_{[-0.1,0.1]} \leqslant \varphi \leqslant \mathbf{1}_{[-1,1]}$, and $\|\varphi\|_{L^{1}}=1$.

Solution. Let $f \in L^{2}(\mathbb{R})$, and f_{n} be the function defined above. Observe that $f_{n} \in C_{c}^{\infty}(\mathbb{R}) \Rightarrow f_{n} \in \mathcal{S}(\mathbb{R}) \forall n$.
Moreover,

$$
\left\|H\left(f_{n}-f\right)\right\|_{L^{2}(\mathbb{R})}=\left\|f_{n}-f\right\|_{L^{2}(\mathbb{R})}
$$

\Rightarrow possibly by passing to a subsequence we have

$$
H f_{n}(x) \rightarrow H f(x) \text { for ale. } x \in \mathbb{R} \text {. }
$$

Moreover, $\forall x \notin \operatorname{css}-\operatorname{spp}(f) \exists \bar{N}(x)>0$ such that

$$
\operatorname{dist}\left(x, \operatorname{spp}\left(f_{m}\right)\right) \geq \frac{\operatorname{dist}(x, \text { ess.sppp }(f))}{2}=: \delta \quad \forall \quad n \geq \bar{N}(x) .
$$

For such valves of n it holds

$$
\begin{aligned}
& \left.\left|H f_{n}(x)-\frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x-y} d y\right|=\left.\frac{1}{\pi}\right|_{\mathbb{R}}\left(\frac{f_{n}(y)}{x-y}-\frac{f(y)}{x-y}\right) d y \right\rvert\, \\
& =\frac{1}{\pi}\left|\int_{|x-y| \geq \delta} \frac{1}{(x-y)}\left(f_{n}(y)-f(y)\right) d y\right| \\
& \leq \frac{1}{\pi} C(\delta)\left\|f_{n}-f\right\|_{L^{2}(\mathbb{R})} \rightarrow 0 \text { as } n \rightarrow \infty . \\
& \int_{1} C H f(x)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x-y} d y
\end{aligned}
$$

for a.e. $x \notin \operatorname{ess}-\operatorname{spp}(f)$.

