SINGULAR INTEGRAL OPERATORS EXERCISE V (28.11.2023)

Exercise 1 (1 point). Prove that in \mathbb{R}^n the family of all dyadic cubes containing 0 is $(1 - 2^{-n})$ -sparse.

Exercise 2 (1 point). Suppose that $\mathcal{F}_1, \ldots, \mathcal{F}_k$ are sparse families of dyadic cubes, and that each \mathcal{F}_j is η_j -sparse for some $\eta_j \in (0, 1]$. Show that $\mathcal{F}_1 \cup \cdots \cup \mathcal{F}_k$ is $1/(\sum_{j=1}^k \eta_j^{-1})$ sparse.

Hint: Use Proposition 7.8.

Exercise 3 (3 points). For any $s \in (0, 1)$ let $w_s = |x|^{1-s}$ be a weight on \mathbb{R} .

- (i) Show that $w_s \in A_2$, and $[w_s]_{A_2} \leq s^{-1}$. (ii) Given $f_s(x) = x^{s-1} \mathbf{1}_{(0,1)}(x)$, show that $||f_s||_{L^2(w_s)} \leq s^{-1/2}$.
- (iii) Prove that $||Hf_s||_{L^2(w_s)} \ge Cs^{-3/2}$, and conclude that in the estimate from the A_2 theorem

 $||Hf||_{L^2(w)} \leq C[w]_{A_2} ||f||_{L^2(w)},$

the factor $[w]_{A_2}$ cannot be replaced by $[w]_{A_2}^t$ for any t < 1.