SINGULAR INTEGRAL OPERATORS EXERCISE IV (21.11.2023)

Exercise 1 (1 point). Let $1 \leq p < \infty$ and $w \in A_p$. Show that $L^1(\mathbb{R}^n)$ is dense in $L^p(w)$. Hint: For any $f \in L^p(w)$ prove that $f_R := f\mathbf{1}_{B(0,R)} \in L^1(\mathbb{R}^n)$ for all R > 0, and that $f_R \to f$ in $L^p(w)$ as $R \to \infty$. The estimate (6.9) from lecture notes (and its modification for p = 1) may be helpful.

Exercise 2 (1 point). Prove that in the definition of the A_p condition we may replace cubes by balls and still get the same class of weights. More specifically,

$$\sup_{Q\subset\mathbb{R}^n}\left(\frac{1}{|Q|}\int_Q w\right)\left(\frac{1}{|Q|}\int_Q w^{1-p'}\right)^{p-1}\sim\sup_{B\subset\mathbb{R}^n}\left(\frac{1}{|B|}\int_B w\right)\left(\frac{1}{|B|}\int_B w^{1-p'}\right)^{p-1},$$

where Q are cubes and B are balls.

Hint: The doubling condition $(w(2B) \leq Cw(B))$ for all balls) is relevant.

Exercise 3 (2 points). Prove that $w(x) = |x|^a$ is an A_p weight on \mathbb{R}^n , 1 , if and only if <math>-n < a < n(p-1).

Hint: Show first that $w(x) = |x|^a$ is a doubling weight if and only if a > -n. Consider separately balls $B = B(x_0, r)$ such that $|x_0| \ge 3r$, and such that $|x_0| < 3r$.

Exercise 4 (1 point). Show that

$$w(x) = \begin{cases} \log \frac{1}{|x|} & |x| \le e^{-1} \\ 1 & |x| > e^{-1} \end{cases}$$

is an A_1 weight on \mathbb{R}^n .