## SINGULAR INTEGRAL OPERATORS <br> EXERCISE III (14.11.2023)

Exercise 1 (1 point). Prove that if a Calderón-Zygmund operator $T$ is associated to a standard kernel $K$, then its adjoint (see Section 4.3 in the notes) is also a CalderónZygmund operator, and it is associated to the standard kernel

$$
K^{t}(x, y)=\overline{K(y, x)} .
$$

The following exercise demonstrates that the strong type $(2,2)$ estimate in the definition of Calderón-Zygmund operators can be replaced by any other strong type $(p, p)$ estimate, $1<p<\infty$, and the class of operators remains the same.
Exercise 2 (1 point). Suppose that in the definition of Calderón-Zygmund operators (Definition 4.9) we replaced the strong type $(2,2)$ estimate by the strong type $(p, p)$ estimate for some $1<p<\infty$. How would you modify the proof of Theorem 4.13 to get that these "new" Calderón-Zygmund operators are weak type ( 1,1 ) and strong type $(q, q), 1<q<\infty ?^{1}$ You don't have to repeat the whole proof, just the parts that change compared to $p=2$.
Exercise 3 (2 points). Let $T$ be a Calderón-Zygmund singular integral operator, and $T_{\varepsilon}$ the associated truncated operators. Prove that for $f \in L^{1}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} T_{\varepsilon} f(x)=T f(x) \quad \text { for a.e. } x \in \mathbb{R}^{n}, \tag{0.1}
\end{equation*}
$$

and for $f \in L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}\left\|T_{\varepsilon} f-T f\right\|_{L^{p}}=0 \tag{0.2}
\end{equation*}
$$

Hint: For (0.1) use the weak type $(1,1)$ estimates of $T$ and the maximal operator $T_{*}$. For (0.2) use that $\lim _{\varepsilon \rightarrow 0} T_{\varepsilon} f(x)=T f(x)$ for a.e. $x \in \mathbb{R}^{n}$ (shown in the lecture) and the dominated convergence theorem.

Recall that $M$ is the usual Hardy-Littlewood maximal operator, and its modified version $M_{c}$ is defined as

$$
M_{c} f(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f|,
$$

where the supremum is taken over all axis-parallel cubes containing $x$.
Exercise 4 (1 point). Show that there exists $C=C(n) \geqslant 1$ such that for any $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$ we have

$$
C^{-1} M f(x) \leqslant M_{c} f(x) \leqslant C M f(x) .
$$

Conclude that $M$ is of weak type $(p, p)$ with respect to a weight $w$ for some $1 \leqslant p<\infty$ if and only if $M_{c}$ is of weak type ( $p, p$ ) with respect to $w$.

Exercise 5 (1 point). Show that the $A_{1}$ condition is equivalent to

$$
M_{c} w(x) \leqslant C w(x) \quad \text { for a.e. } x \in \mathbb{R}^{n} \text {. }
$$

[^0]
[^0]:    ${ }^{1}$ In particular, the "new" definition of CZ operators is equivalent to the one from the lectures.

