SINGULAR INTEGRAL OPERATORS
 EXERCISE II (7.11.2023)

Exercise 1 (1 point). Show that for every Hölder continuous $\Omega: \mathbb{S}^{n-1} \rightarrow \mathbb{C}$ the kernel $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \backslash\left\{(x, x): x \in \mathbb{R}^{n}\right\} \rightarrow \mathbb{C}$ defined by

$$
K(x, y)=\frac{\Omega\left(\frac{x-y}{|x-y|}\right)}{|x-y|^{n}}
$$

is a standard kernel.
Exercise 2 (1 point). Prove that if A is Lipschitz, then the Cauchy kernel

$$
K(x, y)=\frac{1}{x-y+i(A(x)-A(y))}
$$

is a standard kernel with $\delta=1$.
Exercise 3 (2 points). If T is a Calderón-Zygmund operator such that it is associated with two kernels K_{1} and K_{2}, that is, for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$ with compact support

$$
T f(x)=\int K_{1}(x, y) f(y) d y=\int K_{2}(x, y) f(y) d y \quad \text { for } x \notin \operatorname{supp} f,
$$

then $K_{1}=K_{2}$ a.e.
Hint: Assume that the claim is false. You should find a positive measure set $E \subset \mathbb{R}^{n}$ and a point $x \notin E$ such that $K_{1}(x, y)-K_{2}(x, y)$ has a fixed sign for $y \in E$.

Recall that $\mathcal{D}\left(\mathbb{R}^{n}\right)$ denotes the family of dyadic cubes. The notation $A \lesssim B$ stands for "there exists a dimensional constant $C \geqslant 1$ such that $A \leqslant C B$," and $A \sim B$ means $A \lesssim B \lesssim A$. Given $Q \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ we write $C Q$ to denote the cube with the same center as Q and with sidelength $C \ell(Q)$.
Exercise 4 (2 point). Suppose that $\Omega \subsetneq \mathbb{R}^{n}$ is an open set. Let $\mathcal{W} \subset \mathcal{D}\left(\mathbb{R}^{n}\right)$ be the family of maximal ${ }^{1}$ cubes contained in Ω and satisfying $10 Q \cap \Omega^{c}=\varnothing$. Prove that
(i) the cubes in \mathcal{W} are pairwise disjoint, and $\bigcup_{Q \in \mathcal{W}} Q=\Omega$,
(ii) for every $Q \in \mathcal{W}$ we have $\ell(Q) \sim \operatorname{dist}\left(Q, \Omega^{c}\right)$,
(iii) for every $P, Q \in \mathcal{W}$ with $3 P \cap 3 Q \neq \varnothing$ we have $\ell(P) \sim \ell(Q)$.
(iv) for every $Q \in \mathcal{W}$ we have $\#\{P \in \mathcal{W}: 3 P \cap 3 Q \neq \varnothing\} \lesssim 1$.

The family \mathcal{W} is called the Whitney decomposition of Ω, and it has many applications in analysis.

[^0]
[^0]: ${ }^{1}$ maximal with respect to inclusion

