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Abstract
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1 Introduction
This course will focus on singular integral operators, which are operators of the
form

Tf(x) =
∫

K(x, y)f(y) dy,

where the kernel K(x, y) has a singularity on the diagonal x = y. These operators
appear naturally e.g. in the theory of partial differential equations, and they have
been studied for over a century. The prototypical example is the Hilbert transform

Hf(x) = lim
ε→0

1
π

∫
|x−y|>ε

f(y)
x − y

dy.

The basic questions we will study concern the mapping properties of singular
integral operators: for which 1 ≤ p ≤ ∞ and under what hypotheses on the kernel
K is the operator T bounded on Lp, in the sense that

∥Tf∥Lp ≤ C∥f∥Lp .

The material we will cover reflects both the long tradition of this field, and the
fact that it is still an active area of research. We will begin by studying the Hilbert
and Riesz transforms, which date back almost 100 years back. Then, we will move
on to the Calderón-Zygmund theory, which revolutionized the field in the 1950s.
Finally, we will discuss singular integrals in the weighted setting, which is a much
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more recent topic. The grand finale will be the proof of the A2 theorem, which was
shown by Tuomas Hytönen in 2012 [Hyt12]. We will follow a short and elegant
proof from [Ler16] which uses a cutting-edge technique called sparse domination.

The field of singular integral operators is huge, and we will only scratch the
surface in this course. We refer interested readers to the textbooks [Duo01, Gra14a,
Gra14b, Ste70, Ste93] for more thorough treatments of the subject.

We claim no originality for any of the proofs. While preparing these lecture
notes we used the books mentioned above, as well as [Con13, Ler16, LN19, Par20].
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2 Preliminaries
Before getting started in earnest, we recall briefly some useful facts and definitions.
For proofs and details, see e.g. Chapters 1 and 2 of [Gra14a].

In these notes we sometimes use the notation A ≲ B, which stands for “there
exists a dimensional constant C ≥ 1 such that A ≤ CB.” We write A ∼ B instead
of A ≲ B ≲ A.

2.1 Schwartz functions and tempered distributions
Definition 2.1 (Schwartz functions). A function f ∈ C∞(Rn) is a Schwartz func-
tion, denoted by f ∈ S(Rn), if for every pair of multi-indices α = (α1, . . . , αn),
β = (β1, . . . , βn) ∈ Nn we have

ρα,β(f) := sup
x∈Rn

|xα · ∂βf(x)| < ∞.

We will say that a function decays rapidly if it decays at ∞ faster than any
polynomial. Hence, Schwartz functions are precisely those C∞(Rn) functions which
decay rapidly and whose all partial derivatives decay rapidly.
Example 2.2. Any smooth and compactly supported function is a Schwartz func-
tion, so that C∞

c (Rn) ⊂ S(Rn). A simple example of a non-compactly supported
Schwartz function is e−|x|2 .

One of the reasons Schwartz functions are useful is the following density result.

Lemma 2.3. The Schwartz functions are dense in Lp(Rn) for all 1 ≤ p < ∞.

Note that S(Rn) is a vector space. A topology on S(Rn) can be defined using
the family of semi-norms ρα,β, and it is compatible with the following notion of
convergence.
Definition 2.4 (convergence in S(Rn)). Given f ∈ S(Rn) and a sequence fk ∈
S(Rn), we say that fk coverges to f in S(Rn) if for all multi-indices α, β ∈ Nn

lim
k→∞

ρα,β(fk − f) = 0.

Definition 2.5 (tempered distributions). We denote by S ′(Rn) the dual space of
S(Rn), i.e., the space of all continuous linear functionals T : S(Rn) → C. The
elements of S ′(Rn) are called tempered distributions.

Given T ∈ S ′(Rn) and f ∈ S(Rn), instead of writing T (f) we will write ⟨T, f⟩,
and we will call it the action of T on f .

We have the following useful characterization of tempered distributions:
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Lemma 2.6. A linear functional T : S(Rn) → C is a tempered distribution if and
only if there exist m, k ∈ N and C > 0 such that for all f ∈ S(Rn)

|⟨T, f⟩| ≤ C
∑

|α|≤m, |β|≤k

ρα,β(f).

Example 2.7. Any function g ∈ Lp(Rn), 1 ≤ p ≤ ∞, gives rise to a tempered
distribution Tg ∈ S ′(Rn) defined via ⟨Tg, f⟩ =

∫
f(x)g(x) dx.

Example 2.8. Any finite Borel measure µ gives rise to a tempered distribution
Tµ ∈ S ′(Rn) defined via ⟨Tµ, f⟩ =

∫
f dµ.

In the case of tempered distributions as above, we will often identify Tg with
g, and Tµ with µ. For example, the statement “T ∈ S ′(Rn) is a C∞(Rn) function”
should be understood as “there exists f ∈ C∞(Rn) such that T = Tf .” The Hilbert
transform we will define shortly will provide us with an example of a tempered
distribution which is neither a locally integrable function, nor a measure.

Many common operations performed on functions can be extended by duality
to tempered distributions. For example, given h ∈ S(Rn) and T ∈ S ′(Rn), we
define their convolution as a tempered distribution T ∗ h ∈ S ′(Rn) given by

⟨T ∗ h, f⟩ := ⟨T, h̃ ∗ f⟩,

where h̃(x) = h(−x). Similarly, the product of h ∈ S(Rn) and T ∈ S ′(Rn) can be
defined as a tempered distribution hT ∈ S ′(Rn) given by

⟨hT, f⟩ := ⟨T, hf⟩.

Proposition 2.9. Given h ∈ S(Rn) and T ∈ S ′(Rn) the convolution T ∗ h belongs
to C∞(Rn). Moreover,

T ∗ h(x) = ⟨T, h(x − ·)⟩.

2.2 Fourier transform
Definition 2.10. The Fourier transform of f ∈ S(Rn) is defined as

f̂(ξ) :=
∫
Rn

f(x)e−2πix·ξ dx.

Sometimes we will denote it by F(f) instead of f̂ .
The Fourier transform is a homeomorphism of S(Rn) to itself, and its inverse

is given by
f̌(x) :=

∫
Rn

f(ξ)e2πix·ξ dx = f̂(−x),
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sometimes denoted by F−1(f).
The Plancherel identity asserts that for any f ∈ S(Rn)

∥f∥L2(Rn) = ∥f̂∥L2(Rn).

By the density of S(Rn) in L2(Rn), this allows us to extend the Fourier transform
to an isometry of L2(Rn).

One may further extend the definition of Fourier transform to all tempered
distributions using duality: for any T ∈ S ′(Rn) we define T̂ ∈ S ′(Rn) via

⟨T̂ , f⟩ := ⟨T, f̂⟩.
We list a few properties of the Fourier transform we will use later on.
Lemma 2.11. If f ∈ S(Rn) and T ∈ S ′(Rn), then

(i) F(∂αf) = (2πiξ)αf̂ ,

(ii) ∂αf̂ = F((−2πix)αf),

(iii) T̂ ∗ f = T̂ f̂ .

2.3 Weak and strong type inequalities
In this subsection we assume that (X, µ) and (Y, ν) are two measure spaces.
Definition 2.12. Given 1 ≤ p, q ≤ ∞ and an operator T mapping functions from
a dense subset of Lp(X, µ) to measurable functions on (Y, ν), we say that T is of
strong type (p, q) if there exists C > 0 such that

∥Tf∥Lq(Y,ν) ≤ C∥f∥Lp(X,µ).

We say that T is of weak type (p, q) if there exists C > 0 such that for all λ > 0

ν({y ∈ Y : |Tf(y)| > λ}) ≤ C

(
∥f∥Lp(X,µ)

λ

)q

.

It is easy to see that strong type (p, q) implies weak type (p, q).
Definition 2.13 (sublinear operator). An operator T defined on a linear space of
measurable functions on (X, µ) and taking values in measurable functions on (Y, ν)
is sub-linear if

|T (f + g)| ≤ |Tf | + |Tg| and |T (λf)| = |λ||Tf |.
The Marcinkiewicz interpolation theorem stated below plays a crucial role in

the theory of singular integral operators.
Theorem 2.14. Let 1 ≤ p0 < p1 ≤ ∞. Suppose that T is a sub-linear operator
mapping Lp0(X, µ)+Lp1(X, µ) to the set of measurable functions on (Y, ν). If T is
of weak type (p0, p0) and (p1, p1), then it is of strong type (p, p) for all p0 < p < p1.
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3 The Hilbert and Riesz transforms
In this section we will study the prototypical singular integral operator, the Hilbert
transform, as well as its higher dimensional counterparts, the Riesz transforms.
The Hilbert transform arises naturally e.g. in the study of boundary values of
analytic functions, in questions regarding the convergence of Fourier transform,
or in signal processing. While we will not study these applications, they may be
chosen as a presentation topic to pass the course.

3.1 The Hilbert transform on S(R)
The Hilbert transform is the singular integral operator associated with kernel
K(x, y) = 1

π(x−y) . We begin by defining it for Schwartz functions.
As a first attempt at defining it, one could try to simply integrate against the

kernel:
1
π

∫
R

f(y)
x − y

dy.

However, the expression above is highly problematic. Even for a very nice function
f , say, f ∈ C∞

c (R), it is easy to see that as soon as f(x) ̸= 0, the integral above
is not well-defined! This is because (x − y)−1 has a singularity at x which is not
integrable.

To avoid this issue, we first consider the following truncated Hilbert transform.
Definition 3.1 (truncated Hilbert transform). For f ∈ S(R) and ε > 0, we define
the truncated Hilbert transform of f as

Hεf(x) := 1
π

∫
|x−y|>ε

f(y)
x − y

dy = 1
π

∫
|y|>ε

f(x − y)
y

dy.

Note that, by the rapid decay of Schwartz functions, Hεf(x) is well-defined for
every x ∈ R.
Definition 3.2 (Hilbert transform). For f ∈ S(R), we define the Hilbert transform
of f as

Hf(x) := lim
ε→0

Hεf(x) = lim
ε→0

1
π

∫
|y|>ε

f(x − y)
y

dy.

Clearly, for x /∈ supp f this is well-defined, and in fact

Hf(x) = 1
π

∫
R

f(y)
x − y

dy for x /∈ supp f. (3.1)

Let us show that Hf(x) is well-defined also for x ∈ supp f .
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Lemma 3.3. For any f ∈ S(R) and x ∈ R the limit limε→0 Hεf(x) exists, and we
have

Hf(x) = 1
π

∫ 1

−1

f(x − y) − f(x)
y

dy + 1
π

∫
|y|>1

f(x − y)
y

dy. (3.2)

Proof. Fix ε > 0. Note that, since the kernel 1
y

is odd, it has zero mean on any
symmetric pair of intervals around the origin, and in particular∫

ε<|y|<1

1
y

dy = 0.

It follows that∫
|y|>ε

f(x − y)
y

dy =
∫

ε<|y|<1

f(x − y) − f(x)
y

dy +
∫

|y|>1

f(x − y)
y

dy.

The second integral on the right hand side is just a constant that does not depend
on ε. Concerning the first integral, observe that by the mean value theorem the
integrand is uniformly bounded∣∣∣∣∣f(x − y) − f(x)

y

∣∣∣∣∣ ≤ ∥f ′∥L∞(R),

and so the limit exists and we have

lim
ε→0

∫
ε<|y|<1

f(x − y) − f(x)
y

dy =
∫ 1

0

f(x − y) − f(x)
y

dy.

We showed that the Hilbert transform is a well-defined, linear operator defined
on S(R). Later on, we will be interested in extending it to the Lp spaces for
1 < p < ∞. One way to do that is by showing that H is of strong type (p, p), i.e.
that for all f ∈ S(R) we have

∥Hf∥Lp(R) ≤ Cp∥f∥Lp(R).

After establishing such inequality, we may use the density of S(R) in Lp(R) to
extend the Hilbert transform to functions in Lp(R). The exercise below shows
that we may only hope for the strong type (p, p) inequality to hold for 1 < p < ∞.
Exercise 3.4 (1 point). Let f = 1[0,1]. Show that for x ∈ R \ {0, 1}

lim
ε→0

∫
|x−y|>ε

f(y)
x − y

dy = log
∣∣∣∣∣ x

x − 1

∣∣∣∣∣ .
Conclude that the Hilbert transform is neither of strong type (∞, ∞) nor of strong
type (1, 1).
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So our goal is estimating ∥Hf∥Lp(R). As a warm-up, we prove that for f ∈ S(R)
we have Hf ∈ Lp(R) for all 1 < p ≤ ∞. This is a consequence of the following
asymptotic identity.

Lemma 3.5. For f ∈ S(R) we have

lim
|x|→∞

x · Hf(x) = 1
π

∫
R

f(y) dy.

Proof. The proof is similar to that of (3.2). We use the oddness of kernel 1
y

once
again to get that for any x ∈ R with |x| > 0

πx · Hf(x) = lim
ε→0

x
∫

|y|>ε

f(x − y)
y

dy

= lim
ε→0

x
∫

ε<|y|< |x|
2

f(x − y) − f(x)
y

dy + x
∫

|x|
2 <|y|<2|x|

f(x − y)
y

dy

+ x
∫

|y|>2|x|

f(x − y)
y

dy = I1 + I2 + I3.

Regarding I1, note that for |y| < |x|/2 we have |x|/2 ≤ |x − y| ≤ 3|x|/2, and
so by the mean value theorem

|I1| ≤ |x|2 sup
|x|/2≤|ξ|≤3|x|/2

|f ′(ξ)| ∼ sup
|x|/2≤|ξ|≤3|x|/2

|ξ2f ′(ξ)| |x|→∞−−−−→ 0,

where in the last step we used the rapid decay of Schwartz functions.
Concerning I3, we have |x − y| ≥ |x| whenever |y| > 2|x|, and so

|I3| ≤ |x|
∫

|y|>2|x|

|f(x − y)|
2|x|

dy ≤
∫

|z|>|x|
|f(z)| dz

|x|→∞−−−−→ 0,

since f is integrable.
Finally,

I2−
∫

f(x−y) dy =
∫

|x|
2 <|y|<2|x|

(
x

y
− 1

)
f(x−y) dy−

∫
|y|<|x|/2, or |y|>2|x|

f(x−y) dy,

which gives

∣∣∣I2−
∫

f(x−y) dy
∣∣∣ ≤

∫
|x|
2 <|y|<2|x|

∣∣∣∣∣x − y

y

∣∣∣∣∣ |f(x−y)| dy+
∫

|y|<|x|/2, or |y|>2|x|
|f(x−y)| dy

≲ 1
|x|

∫
|zf(z)| dy +

∫
|z|>|x|/2

|f(z)| dy
|x|→∞−−−−→ 0.
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Corollary 3.6. For every f ∈ S(R) we have Hf ∈ Lp(R) for all 1 < p ≤ ∞.

Proof. Note that by (3.2) and the mean value theorem we have

∥Hf∥L∞(R) ≲ ∥f ′∥L∞(R) + sup
x∈R

|x · f(x)|, (3.3)

so the Hilbert transform of a Schwartz function is bounded. Thus, whether Hf ∈
Lp for 1 ≤ p < ∞ depends only on the decay rate of Hf at infinity. By Lemma 3.5,
for |x| large enough we have |Hf(x)| ≲f x−1, and it follows that Hf ∈ Lp(R) for
all p > 1.

Exercise 3.7. Let f ∈ S(R). Show that Hf ∈ L1(R) if and only if
∫
R f(y) dy = 0.

A hint: Modify the proof of Lemma 3.5 to estimate the asymptotics of x2 · Hf(x)
as |x| → ∞.

3.2 The Hilbert transform on L2(R)
In this subsection we extend the Hilbert transform to L2(R). We begin by com-
puting the Fourier transform of Hf .

First, since for any f ∈ S(R) we have Hf ∈ L2(R) by Corollary 3.6, the Fourier
transform Ĥf is well-defined as a function in L2. Below we compute its precise
value.

Proposition 3.8. For any f ∈ S(R) we have

Ĥf(ξ) = −i sgn(ξ)f̂(ξ) for a.e. ξ ∈ R. (3.4)

To prove this, we start by taking a slightly more abstract point of view. Since
the Hilbert transform is linear, and we have the estimate (3.3), we can define a
tempered distribution T0 ∈ S ′(R) by

⟨T0, f⟩ := −Hf(0) = lim
ε→0

1
π

∫
|y|>ε

f(y)
y

dy.

Note that
Hf(x) = ⟨T0, f(x − ·)⟩ = T0 ∗ f(x).

Taking the Fourier transform (in the sense of distributions), we see that

Ĥf = T̂0 · f̂ , (3.5)

where the product is also understood in the sense of distributions: for any φ ∈ S(R)
we have ⟨Ĥf, φ⟩ = ⟨T̂0, f̂φ⟩.

As a consequence of (3.5), to prove (3.4) it suffices to show that T̂0, which
a priori is just a tempered distribution, is in fact a function, and that T̂0(ξ) =
−i sgn(ξ).
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Lemma 3.9. We have T̂0(ξ) = −i sgn(ξ).

Proof. An exercise. Some hints:

(i) Let Kε(y) = 1
y
1|y|>ε, so that ⟨T0, f⟩ = 1

π
limε→0⟨Kε, f⟩, and consider Qε(y) =

y
y2+ε2 . Show that

lim
ε→0

(Kε − Qε) = 0 in S ′(R).

(ii) Using the above, argue that T̂0 = 1
π

limε→0 Q̂ε, in the sense of distributions.

(iii) Show that Qε(x) = F−1(−πi sgn(ξ)e−2πε|ξ|)(x). Conclude that T̂0 is given by
a function, and that T̂0(ξ) = −i sgn(ξ).

As a corollary of Proposition 3.8 and Plancherel’s identity, we can define the
Hilbert transform of functions in L2(R).

Corollary 3.10. For any f ∈ S(R) we have

∥Hf∥L2(R) = ∥f∥L2(R).

Consequently, the Hilbert transform extends to an isometry of L2(R). Moreover,
for any f ∈ L2(R) its Hilbert transform satisfies

Ĥf(ξ) = −i sgn(ξ)f̂(ξ).

Recall that for f ∈ S(R) we have a nice formula for Hf(x) assuming x /∈
supp f , see (3.1). It is easy to see that the same formula holds for f ∈ L2(R).
Exercise 3.11. Show that if f ∈ L2(R), then for a.e. x /∈ supp(f)

Hf(x) = 1
π

∫
R

f(y)
x − y

dy.

Here, supp f denotes the essential support of f .

3.2.1 Truncated Hilbert transform

In Definition 3.1 we introduced the truncated Hilbert transform

Hεf(x) =
∫

|x−y|>ε

f(y)
x − y

dy

11



for f ∈ S(R). However, the same definition makes sense for f ∈ Lp(R) for all
1 ≤ p < ∞ To see that, we use Hölder’s inequality to show that the integral
defining Hεf converges absolutely:∫

|x−y|>ε

∣∣∣∣∣ f(y)
x − y

∣∣∣∣∣ dy ≤ ∥f∥Lp

∥∥∥∥∥1|x−y|>ε

x − y

∥∥∥∥∥
Lq

< ∞,

where 1/p + 1/q = 1, so that 1 < q ≤ ∞.
By the definition of Hilbert transform, we have Hf(x) = limε→0 Hεf(x) for all

f ∈ S(R) and x ∈ R. It is natural to ask for a counterpart of this statement for
f ∈ L2(R); for example, do we have Hεf → Hf in L2 sense? We are able to show
this if we assume that all truncated Hilbert transforms are of strong type (2, 2),
in a uniform way.

Proposition 3.12. Suppose that there exists a constant C > 0 such that

sup
ε>0

∥Hεf∥L2(R) ≤ C∥f∥L2(R) for all f ∈ L2. (3.6)

Then, for every f ∈ L2(R) we have Hεf → Hf in L2.

Proof. Let fn ∈ S(R) be such that fn → f in L2. Then, Hfn → Hf in L2, and
we have

∥Hεf −Hf∥L2 ≤ ∥Hεf −Hεfn∥L2 +∥Hεfn−Hfn∥L2 +∥Hfn−Hf∥L2 =: I1+I2+I3.

The term I3 converges to 0 because Hfn → Hf in L2, whereas I1 converges to 0
because

∥Hεf − Hεfn∥L2 = ∥Hε(f − fn)∥L2

(3.6)
≤ C∥f − fn∥L2

n→∞−−−→ 0.

It remains to estimate I2 = ∥Hεfn − Hfn∥L2 . By (3.2) we have

|Hεfn(x) − Hfn(x)| =
∣∣∣∣∣ 1π
∫ ε

−ε

fn(x − y) − fn(x)
y

dy

∣∣∣∣∣ ≤ 2ε

π
sup

z∈(x−ε,x+ε)
|f ′

n(z)|.

Set gn(x) := supz∈(x−ε,x+ε) |f ′
n(z)|. Since f ′

n decays rapidly, we get that gn also
decays rapidly, and so

I2 = ∥Hεfn − Hfn∥L2 ≤ 2ε

π
∥gn∥L2 .

Hence, for any δ > 0 we may take n large enough such that I1 + I3 ≤ δ, and then
ε > 0 small enough so that I2 ≤ δ. Then, we have ∥Hεf −Hf∥L2 ≤ 2δ, and taking
δ → 0 concludes the proof.

The question remains, how to show the estimate (3.6)? We will address this
later on when we prove the so-called Cotlar’s inequality for general singular integral
operators.

12



3.3 The Riesz transform
Before moving on to general singular integral operators and their Lp-theory, we
briefly discuss another important family of operators, the Riesz transforms. They
are higher dimensional counterparts of the Hilbert transform.
Definition 3.13. For f ∈ S(Rn) and 1 ≤ j ≤ n, we define the j-th Riesz transform
of f as

Rjf(x) := lim
ε→0

Cn

∫
|x−y|>ε

xj − yj

|x − y|n+1 f(y) dy,

where Cn = Γ(n+1
2 )/π

n+1
2 .

As in the case of the Hilbert transform, there is a simple formula for the Fourier
transform of Rjf .
Proposition 3.14. For any f ∈ S(Rn)

R̂jf(ξ) = −i
ξj

|ξ|
f̂(ξ). (3.7)

The proof is similar to that of Proposition 3.4, although there are additional
difficulties. The interested reader can find the full proof e.g. in [Gra14a, Proposi-
tion 5.1.14].

As an immediate corollary of (3.7), we get that for all f ∈ S(Rn)
∥Rjf∥L2(Rn) ≤ ∥f∥L2(Rn), (3.8)

and we may extend the Riesz transforms to L2(Rn).
Finally, we give a simple application of (3.8), which also motivates the study

of Lp-bounds for the Riesz transforms for 1 < p < ∞.
Proposition 3.15. For f ∈ S(Rn) and 1 ≤ j, k ≤ n we have

∂j∂kf = −RjRk∆f. (3.9)
In consequence, for any 1 < p < ∞ such that the bound ∥Rjf∥Lp(Rn) ≤ Cp∥f∥Lp(Rn)
holds for all 1 ≤ j ≤ n, we have

∥∂j∂kf∥Lp(Rn) ≤ (Cp)2∥∆f∥Lp(Rn). (3.10)
Proof. By taking the Fourier transform of ∂j∂kf we get

F(∂j∂kf)(ξ) = (2πiξj)(2πiξk)f̂(ξ)

= −
(

−i
ξj

|ξ|

)(
−i

ξk

|ξ|

)
(−4π2|ξ|2)f̂(ξ)

= −F(RjRk∆f)(ξ).
Taking the inverse Fourier transform finishes the proof of identity (3.9). The
estimate (3.10) follows immediately.

13



4 Calderón-Zygmund theory
In this section we begin the study of general singular integral operators.

4.1 Standard kernels and Calderón-Zygmund operators
The operators we will consider will be associated to the following kernels.
Definition 4.1 (standard kernel). We say that a Borel function K : Rn×Rn\{(x, x) :
x ∈ Rn} → C is a standard kernel if there exists δ > 0 and C > 0 such that

|K(x, y)| ≤ C

|x − y|n
, (4.1)

|K(x, y) − K(x, y′)| ≤ C
|y − y′|δ

|x − y|n+δ
if |x − y| > 2|y − y′|, (4.2)

|K(x, y) − K(x′, y)| ≤ C
|x − x′|δ

|x − y|n+δ
if |x − y| > 2|x − x′|. (4.3)

The bound (4.1) will be referred to as the size condition, while the other two
estimates will be called the smoothness conditions.
Remark 4.2. The estimate |x−y| > 2|y−y′| appearing in the smoothness condition
can be interpreted in the following way: it is the estimate ensuring that 1

2 |x−y| ≤
|x − y′| ≤ 2|x − y| (this follows easily from the triangle inequality).

We give a few examples.
Example 4.3. The Hilbert transform kernel K(x, y) = 1

x−y
is a standard kernel

on R. More generally, the kernels K(x, y) = xj−yj

|x−y|n+1 associated to the Riesz
transforms are standard kernels on Rn.
Example 4.4. Given f ∈ C∞

c (R2) the solution to the Poisson equation ∆u = −2πf
is given by the logarithmic potential of f

u(x) =
∫
R2

f(y) log
(

1
|x − y|

)
dy.

It can be shown that the mixed partial derivative ∂x1∂x2u is given by the singular
integral operator

∂x1∂x2u(x) = lim
ε→0

∫
|x−y|>ε

Ω0
(

x−y
|x−y|

)
|x − y|2

f(y) dy,

where Ω0(x) = 2x1x2
|x|2 , see [CZ52, p. 130]. By the exercise below, the kernel

associated to Ω0 is a standard kernel.
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Exercise 4.5. Show that for every Hölder continuous Ω : Sn−1 → C the kernel
defined by

K(x, y) =
Ω
(

x−y
|x−y|

)
|x − y|n

is a standard kernel on Rn.
Example 4.6. The kernel

K(z, w) = 1
(z − w)2 z, w ∈ C,

is a standard kernel. It is associated to the Beurling-Ahlfors transform, which
plays a fundamental role in the theory of quasiconformal mappings, see [Ast94].

The three examples above are kernels of convolution type, in the sense that
K(x, y) = K0(x − y) for some K0 : Rn \ {0} → C. The next example shows that
there are interesting kernels of non-convolution type, which justifies developing the
theory in this generality.
Example 4.7 (Cauchy integral along a Lipschitz graph). Let A : R → R be a
Lipschitz function, and let Γ = {(t, A(t)) : t ∈ R} ⊂ C. Given f ∈ S(R) let
F : Γ → C be given by F (t + iA(t)) = f(t). The Cauchy integral of f is defined as

CΓf(z) = 1
2πi

∫
Γ

F (w)
w − z

dw = 1
2πi

∫
R

f(t)(1 + iA′(t))
t + iA(t) − z

dt,

and it defines an analytic function on C\Γ. One can compute the boundary values
of CΓf(z) on Γ:

lim
ε→0

CΓf(x + i(A(x) + ε)) = 1
2πi

lim
ε→0

∫
|x−t|>ε

f(t)(1 + iA′(t))
t − x + i(A(t) − A(x))

dt + 1
2

f(x)

lim
ε→0

CΓf(x + i(A(x) − ε)) = 1
2πi

lim
ε→0

∫
|x−t|>ε

f(t)(1 + iA′(t))
t − x + i(A(t) − A(x))

dt − 1
2

f(x),

see [Gra14b, Chapter 4.6]. This leads to the study of the Cauchy transform

Tf(x) = lim
ε→0

∫
|x−y|>ε

f(y)
x − y + i(A(x) − A(y))

dy,

whose kernel
K(x, y) = 1

x − y + i(A(x) − A(y))
(4.4)

is a standard kernel of non-convolution type. For more information and the history
of the Cauchy transform see [Tol14, Ver21].
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Exercise 4.8. Prove that if A is Lipschitz, then the Cauchy kernel (4.4) is standard
with δ = 1.

We are ready to define our main object of study in this course: the Calderón-
Zygmund operators.
Definition 4.9 (Calderón-Zygmund operator). We say that a linear operator T :
L2(Rn) → L2(Rn) is a Calderón-Zygmund operator if

(i) T is of strong type (2, 2),

(ii) there exists a standard kernel K such that for all f ∈ L2(Rn) with compact
support

Tf(x) =
∫

K(x, y)f(y) dy for x /∈ supp f. (4.5)

Whenever (4.5) holds, we will say that T is associated to the kernel K.
We make a few clarifying remarks regarding the definition of Calderón-Zygmund

operators.
Remark 4.10. We stress that the definition of a Calderón-Zygmund operator as-
sumes that the operator is bounded on L2. We already know that this is true for the
Hilbert transform and the Riesz transforms, and so they are Calderón-Zygmund
operators (the property (ii) was shown in Exercise 3.11).

While the other operators mentioned in Examples 4.4, 4.6, 4.7 are also bounded
on L2, in general it is far from obvious. For example, proving the L2-boundedness
of the Cauchy transform on Lipschitz graphs was a major open problem for decades,
and it was only solved in [CMM82]. We will not cover this result.

There are some sufficient conditions on kernels K that imply the L2-boundedness
of associated operators, see [Duo01, Chapter 4]. This may be a topic for a presen-
tation.

The following exercise shows that a Calderón-Zygmund operator uniquely de-
termines its kernel.
Exercise 4.11. If T is a Calderón-Zygmund operator such that (4.5) holds with
two kernels K1 and K2, then K1 = K2 a.e.

The converse is not true. The trivial kernel K = 0 is associated both with the
zero operator T = 0 and with the identity operator T = I. In general, for any
b ∈ L∞(Rn) the pointwise multiplication operator

Tf(x) = b(x)f(x)

is a Calderón-Zygmund operator associated with the kernel K = 0. However, this
is the only ambiguity.
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Lemma 4.12. Suppose that T1 and T2 are two Calderón-Zygmund operators as-
sociated with the same kernel K. Then, there exists b ∈ L∞(Rn) such that

T1f = T2f + bf.

Proof. Let T = T1 − T2, so that T is a Calderón-Zygmund operator associated
with the kernel K = 0. Our aim is to show that Tf = bf for some b ∈ L∞. We
will only prove this identity for characteristic functions, the case of general f ∈ L2

follows by the density of simple functions in L2.
First, we claim that for all measurable sets E, F ⊂ Rn with 0 < |E|, |F | < ∞

we have T (1E) = 1ET (1E) and

1F T (1E) = T (1E∩F ). (4.6)

Indeed, we have T (1E)(x) = 0 for a.e. x /∈ E, since T is associated to K = 0.
This gives T (1E) = 1ET (1E), and also it shows that 1F T (1E) = 1E∩F T (1E). By
linearity of T ,

1E∩F T (1E) = 1E∩F T (1E∩F ) + 1E∩F T (1E\F )
= 1E∩F T (1E∩F ) + 1E∩F 1E\F T (1E\F ) = 1E∩F T (1E∩F ) + 0.

This gives (4.6).
Formally, we would like to define b = T1, but since 1 /∈ L2, we have to work a

bit to make this rigorous. Let {Q}Q∈Q be a family of closed unit cubes tiling Rn.
Let bQ = T (1Q). Note that supp bQ = supp T (1Q) ⊂ Q.

By the Lebesgue differentiation theorem, for a.e. x ∈ Rn we have

|bQ(x)| = lim
r→0

∣∣∣∫B(x,r) bQ dy
∣∣∣

|B(x, r)|
. (4.7)

We use the Cauchy-Schwarz inequality and the L2-boundedness of T to get∣∣∣∣∣
∫

B(x,r)
bQ dy

∣∣∣∣∣ =
∣∣∣∣∣
∫

B(x,r)
1B(x,r)T (1Q) dy

∣∣∣∣∣ (4.6)=
∣∣∣∣∣
∫

B(x,r)
T (1Q∩B(x,r)) dy

∣∣∣∣∣
≤ |B(x, r)|1/2∥T (1Q∩B(x,r))∥L2 ≤ C|B(x, r)|1/2|Q ∩ B(x, r)|1/2.

Together with (4.7) this gives |bQ(x)| ≤ C for a.e. x ∈ Rn, so that bQ ∈ L∞.
Recalling that supp bQ ⊂ Q, we get that

b :=
∑

Q∈Q
bQ ∈ L∞.
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We claim that for any bounded measurable E ⊂ Rn with 0 < |E| < ∞ we have
T1E = b1E. Indeed, such E intersects only a finite number of Q ∈ Q, and then

T (1E) =
∑

Q∈Q
T (1E∩Q) (4.6)= 1E

∑
Q∈Q

T (1Q) = 1Eb.

Our goal is to prove the following fundamental result due to Calderón and
Zygmund.

Theorem 4.13. Suppose that T is a Calderón-Zygmund operator. Then, T is of
weak type (1, 1), and of strong type (p, p) for 1 < p < ∞.

We will prove it over the following two subsections.

4.2 Calderón-Zygmund decomposition
Definition 4.14. The family of dyadic cubes in Rn, denoted by D(Rn), is defined
as

D(Rn) =

2−k(m + [0, 1)n) =
n∏

i=1
[2−kmi, 2−kmi + 2−k)) : m ∈ Zn, k ∈ Z

 .

Given Q ∈ D(Rn), we will denote its sidelength by ℓ(Q). We set

Dk(Rn) = {Q ∈ D(Rn) : ℓ(Q) = 2−k}.

When the ambient space Rn is clear from context, we will write D instead of
D(Rn). Note that in our definition dyadic cubes are half-open, half-closed, so that
for a fixed k ∈ Z the family Dk(Rn) consists of pairwise-disjoint cubes, and it is a
partition of Rn.

We point out several important properties of the dyadic cubes:

(i) For any Q, P ∈ D(Rn) we have either Q ∩ P = ∅, or Q ⊂ P , or P ⊂ Q.

(ii) For every Q ∈ Dk(Rn) there is a unique Q̂ ∈ Dk−1(Rn) such that Q ⊂ Q̂.
We will call Q̂ the parent of Q.

(iii) Every Q ∈ Dk(Rn) contains exactly 2n cubes from Dk+1(Rn). We will call
these cubes the children of Q.

These properties endow D(Rn) with a natural tree structure based on the parent-
child relation.

The following is the main result of this subsection, and it is crucial for the
proof of Theorem 4.13.
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Proposition 4.15. Let f ∈ L1(Rn) and α > 0. There exists a decomposition of
f of the form

f = g +
∑
Q∈B

bQ,

where B is a collection of disjoint dyadic cubes, and which satisfies the following:

(i) the “good part” g satisfies ∥g∥L1 ≤ ∥f∥L1 and ∥g∥L∞ ≤ 2nα,

(ii) each “bad function” bQ is supported on Q, satisfies
∫

Q bQ = 0, and

∥bQ∥L1 ≤ 2n+1α|Q|, (4.8)

(iii) for each Q ∈ B we have

α ≤ 1
|Q|

∫
Q

|f | ≤ 2nα, (4.9)

(iv) we can estimate the total measure of cubes in B by

∑
Q∈B

|Q| ≤ ∥f∥L1

α
.

Proof. We will say that a cube Q ∈ D is bad if

1
|Q|

∫
Q

|f | > α.

A bad cube Q is called maximal if there in no other bad cube Q′ such that Q ( Q′.
We claim that every bad cube is contained in some maximal bad cube. If that

was not true, then there would be a sequence of bad cubes Q1, Q2, . . . such that
ℓ(Qk) → ∞. At the same time,

α <
1

|Qk|

∫
Qk

|f | ≤ ∥f∥L1

|Qk|
k→∞−−−→ 0,

which is a contradiction.
Let B be the family of maximal bad cubes. Since they are dyadic and maximal,

they are disjoint. For every Q ∈ B we define

bQ :=
(

f − 1
|Q|

∫
Q

f

)
1Q,

and
g := f −

∑
Q∈B

bQ.
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We begin by proving (iii). The lower bound in (4.9) is just the definition of
bad cubes. The upper bound follows from maximality: for every Q ∈ B its parent
Q̂ is not a bad cube, and so

1
|Q|

∫
Q

|f | ≤ |Q̂|
|Q|

1
|Q̂|

∫
Q̂

|f | ≤ 2nα.

Concerning (ii), the first two properties follow immediately from the definition,
and

∥bQ∥L1 ≤
∫

Q
|f |dx +

∫
Q

∣∣∣∣∣ 1
|Q|

∫
Q

fdx

∣∣∣∣∣ dy ≤ 2
∫

Q
|f |dx

(4.9)
≤ 2n+1α|Q|.

We move on to (i). Note that

g(x) =

f(x) for x /∈ ⋃
Q∈B Q

1
|Q|
∫

Q f for x ∈ Q ∈ B.

Hence,

∥g∥L1 =
∫
Rn\
⋃

Q∈B Q
|f |dx +

∑
Q∈B

∫
Q

∣∣∣∣∣ 1
|Q|

∫
Q

fdy

∣∣∣∣∣ dx

=
∫
Rn\
⋃

Q∈B Q
|f |dx +

∑
Q∈B

∣∣∣∣∣
∫

Q
fdy

∣∣∣∣∣ ≤ ∥f∥L1 .

To see ∥g∥L∞ ≤ 2nα, note that |g(x)| ≤ 2nα for x ∈ Q ∈ B by (4.9). Let
x /∈ ⋃

Q∈B Q, so that g(x) = f(x). Then, for all dyadic cubes containing x we have
1

|Q|
∫

Q |f |dx ≤ α. By the (dyadic version of) Lebesgue differentiation theorem for
a.e. y ∈ Rn we have

|f(y)| = lim
ℓ(Q)→0, y∈Q∈D

1
|Q|

∫
Q

|f |dz

Together with the estimate 1
|Q|
∫

Q |f | ≤ α, this shows that for a.e. x /∈ ⋃
Q∈B Q we

have |g(x)| = |f(x)| ≤ α < 2nα.
Finally, we show (iv). By the definition of bad cubes,

∑
Q∈B

|Q| ≤
∑
Q∈B

∫
Q |f |
α

≤ ∥f∥L1

α
,

where in the last inequality we also used that the cubes in B are disjoint.
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4.3 The Lp theory for Calderón-Zygmund operators
In this subsection we prove Theorem 4.13, whose statement we repeat below.

Theorem. Suppose that T is a Calderón-Zygmund operator. Then, T is of weak
type (1, 1), and of strong type (p, p) for 1 < p < ∞.

We begin by reducing matters to the weak type (1,1) estimate.

Weak type (1,1) implies strong type (p, p). Fix a Calderón-Zygmund operator T .
By definition, it is of strong type (2,2). Hence, as soon as we know that it is of weak
type (1,1), it follows from the Marcinkiewicz interpolation theorem (Theorem 2.14)
that T is of strong type (p, p) for all 1 < p < 2. To get the same for 2 < p < ∞
we argue by duality as follows.

Given a Calderón-Zygmund operator T : L2(Rn) → L2(Rn) we consider its
adjoint operator T t : L2(Rn) → L2(Rn) defined by

⟨T t(g), f⟩L2 =
∫

T t(g) · f̄ dx =
∫

g · T (f) dx = ⟨g, T (f)⟩L2 .

This is well-defined by the Riesz representation theorem.
Exercise 4.16. Prove that if a Calderón-Zygmund operator T is associated to a
standard kernel K, then its adjoint is also a Calderón-Zygmund operator, and it
is associated to the standard kernel

Kt(x, y) = K(y, x).

Since T t is a Calderón-Zygmund operator, it follows by the argument above
that T t is of strong type (q, q) for all 1 < q < 2. Fix f ∈ S(Rn), 2 < p < ∞, and
let 1 < q < 2 be such that 1/p + 1/q = 1. Then, using that the dual of Lp(Rn) is
Lq(Rn), we get

∥Tf∥Lp = sup
g∈S, ∥g∥Lq ≤1

∣∣∣∣∫ T (f) · g
∣∣∣∣ = sup

g∈S, ∥g∥Lq ≤1

∣∣∣∣∫ f · T t(g)
∣∣∣∣

≤ ∥f∥Lp sup
g∈S, ∥g∥Lq ≤1

∥T t(g)∥Lq ≤ Cq∥f∥Lp sup
g∈S, ∥g∥Lq ≤1

∥g∥Lq = Cq∥f∥Lp .

Hence, T is of strong type (p, p).

Proof of the weak type (1,1) estimate. Let1 f ∈ L1 ∩ L2. Our goal is to show that
there exists a dimensional constant C such that for any α > 0

|{x ∈ Rn : |Tf(x)| > α}| ≤ C
∥f∥L1

α
.

1We only assume f ∈ L2 so that Tf is well-defined, our estimates will be independent of
∥f∥L2 .
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We apply the Calderón-Zygmund decomposition (Proposition 4.15) to f at level
α, so that f = g + b = g +∑

Q∈B bQ. By the linearity of T , we have Tf = Tg + Tb,
and so

|{x ∈ Rn : |Tf(x)| > α}|
≤ |{x ∈ Rn : |Tg(x)| > α/2}| + |{x ∈ Rn : |Tb(x)| > α/2}|. (4.10)

To estimate the term corresponding to g, we use Chebyshev’s inequality and the
fact that ∥g∥L1 ≤ ∥f∥L1 , ∥g∥L∞ ≤ 2nα:

|{x ∈ Rn : |Tg(x)| > α/2}| ≤ ∥Tg∥2
L2

(α/2)2 ≲ ∥g∥2
L2

α2

≤ ∥g∥L1∥g∥L∞

α2 ≤ 2nα∥f∥L1

α2 ∼ ∥f∥L1

α
. (4.11)

So the first term from the RHS of (4.10) satisfies the desired inequality. We move
on to the second term, which is more difficult to estimate.

For every Q ∈ B let Q∗ be the cube with the same center as Q, and with
sidelength ℓ(Q∗) = 2

√
n ℓ(Q). We have

|{x ∈ Rn : |Tb(x)| > α/2}| ≤
∑
Q∈B

|Q∗| + |{x ∈ Rn \
⋃

Q∈B
Q∗ : |Tb(x)| > α/2}|.

The first term satisfies
∑
Q∈B

|Q∗| ≲
∑
Q∈B

|Q| ≤ ∥f∥L1

α

by Proposition 4.15 (iv). Concerning the second term, by Chebyshev’s inequality

|{x ∈ Rn \
⋃

Q∈B
Q∗ : |Tb(x)| > α/2}| ≤ 2

α

∫
(
⋃

Q∈B Q∗)c
|Tb(x)| dx

≤ 2
α

∑
Q′∈B

∫
(
⋃

Q∈B Q∗)c
|TbQ′(x)| dx ≤ 2

α

∑
Q∈B

∫
(Q∗)c

|TbQ(x)| dx.

It remains to show that the sum above is bounded by C∥f∥L1 .
Fix Q ∈ B and let yQ denote the center of Q. Since supp bQ ⊂ Q and

∫
Q bQ = 0,

we get that for x ∈ (Q∗)c

TbQ(x) =
∫

Q
K(x, y)bQ(y) dy =

∫
Q

(K(x, y) − K(x, yQ))bQ(y) dy.
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Observe that for x ∈ (Q∗)c and y ∈ Q we have |x − y| ≥ ℓ(Q∗)/2 =
√

nℓ(Q) and
|y − yQ| ≤ diam(Q)/2 =

√
nℓ(Q)/2, so that |x − y| ≥ 2|y − yQ|. It follows that we

may use the smoothness condition on K (4.2) to estimate

|TbQ(x)| ≲
∫

Q

|y − yQ|δ

|x − yQ|n+δ
|bQ(y)| dy ≲ ℓ(Q)δ

|x − yQ|n+δ
∥bQ∥L1 .

Hence,∫
(Q∗)c

|TbQ(x)| dx ≲ ℓ(Q)δ∥bQ∥L1

∫
(Q∗)c

1
|x − yQ|n+δ

dy ≤ C(δ)∥bQ∥L1 ,

which gives
∑
Q∈B

∫
(Q∗)c

|TbQ(x)| dx ≲δ

∑
Q∈B

∥bQ∥L1 = ∥b∥L1 ≤ ∥f∥L1 + ∥g∥L1 ≤ 2∥f∥L1 .

This finishes the proof.
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5 Truncations of Calderón-Zygmund operators

5.1 Convergence of truncated operators
Definition 5.1. Given a Calderón-Zygmund operator T associated to a standard
kernel K, for every ε > 0 we define the truncated operator Tε as

Tεf(x) =
∫

|x−y|>ε
K(x, y)f(y) dy,

where f ∈ ⋃
1≤p<∞ Lp(Rn).

The integral defining Tεf makes sense for any f ∈ ⋃
1≤p<∞ Lp(Rn) by the size

condition (4.1) and Hölder’s inequality.
Definition 5.2. Given a Calderón-Zygmund operator T , the maximal operator as-
sociated to T is defined as

T∗f(x) := sup
ε>0

|Tεf(x)|.

We will prove the following result in the next subsection.

Theorem 5.3. If T is a Calderón-Zygmund operator, then the maximal operator
T∗ is of weak type (1, 1) and of strong type (p, p) for all 1 < p < ∞.

We give an application of this result to the study of convergence of truncated
operators.
Definition 5.4. A Calderón-Zygmund operator T is called a Calderón-Zygmund
singular integral operator if for all f ∈ C∞

c (Rn) and a.e. x ∈ Rn

Tf(x) = lim
ε→0

Tεf(x).

Example 5.5. The Hilbert and Riesz transforms are Calderón-Zygmund singular
integral operators.

Not all Calderón-Zygmund operators are Calderón-Zygmund singular integral
operators. For some Calderón-Zygmund operators the limit limε→0 Tεf(x) does
not exist, see Example 5.9 and Proposition 5.12 in [Duo01]. For others, the limit
exists but is different from Tf . For example, if T = I is the identity operator,
than Tε = 0 for all ε > 0. See also Proposition 4.1.11 in [Gra14b] for a related
result.

The following is a more general and stronger version of Proposition 3.12.
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Proposition 5.6. Suppose that T is a Calderón-Zygmund singular integral oper-
ator. For every 1 ≤ p < ∞ and f ∈ Lp(Rn) we have

lim
ε→0

Tεf(x) = Tf(x) for a.e. x ∈ Rn. (5.1)

Moreover, for 1 < p < ∞ and f ∈ Lp(Rn) we have

lim
ε→0

∥Tεf − Tf∥Lp = 0. (5.2)

Proof. For any f ∈ Lp(Rn), 1 ≤ p < ∞, define

Λf(x) := lim sup
ε→0

|Tεf(x) − Tf(x)|.

Note that Λf ≤ T∗f + Tf. Since T is a Calderón-Zygmund singular integral oper-
ator, we have Λf = 0 a.e. for f ∈ C∞

c (Rn).
For a general f ∈ Lp(Rn), let fn ∈ C∞

c (Rn) be such that fn → f in Lp. Then,

Λf(x) ≤ Λfn(x) + Λ(f − fn)(x) = Λ(f − fn)(x)

for a.e. x ∈ Rn. If 1 < p < ∞, we can estimate

∥Λf∥Lp = ∥Λ(f − fn)∥Lp ≤ ∥T∗(f − fn)∥Lp + ∥T (f − fn)∥Lp ≤ C∥fn − f∥Lp ,

where in the last inequality we used the strong type (p, p) estimates for T∗ and T .
Letting n → ∞ we get ∥Λf∥Lp = 0, and so Λf = 0 a.e. This gives (5.1).

The remaining conclusions are left as an exercise.

Exercise 5.7. Prove (5.1) for p = 1, and (5.2) for 1 < p < ∞.
Hint: For (5.1) use the weak type (1, 1) estimates of T and T∗. For (5.2) use

(5.1) and the dominated convergence theorem.

5.2 Cotlar’s inequality
Recall that the Hardy-Littlewood maximal function of f ∈ L1

loc(Rn) is defined as

Mf(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)| dy.

This operator satisfies weak type (1, 1) estimate, and strong type (p, p) estimates
for 1 < p ≤ ∞. Moreover, the weak (1, 1) estimate can be refined to

|{x ∈ Rn : Mf(x) > λ}| ≤ C

∫
{Mf>λ} |f |

λ
. (5.3)

See Chapter 2.4 in [Duo01] or Chapter 2.1 in [Gra14a] for details.
The following estimate is sometimes referred to as Cotlar’s inequality.
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Theorem 5.8. Suppose that T is a Calderón-Zygmund operator. For any 0 < r ≤
1 there exists a constant C = C(n, r, T ) such that for any f ∈ C∞

c (Rn)

T∗f(x) ≤ C(M(|Tf |r)(x)1/r + Mf(x)). (5.4)

To prove this inequality, we need the following auxiliary estimate due to Kol-
mogorov.

Lemma 5.9. Suppose that S is a weak type (1, 1) operator, and E ⊂ Rn is a
measurable set with |E| < ∞. Then, there exists C > 0 (depending only on the
weak (1, 1) constant) such that such that for all f ∈ L1(Rn) and 0 < r < 1∫

E
|Sf(x)|r dx ≤ C

1
1 − r

|E|1−r∥f∥r
L1 .

Proof. The layer cake formula and the weak type (1, 1) estimate for S give∫
E

|Sf(x)|r dx = r
∫ ∞

0
λr−1|{x ∈ E : |Sf(x)| > λ}| dλ

≤ r
∫ ∞

0
λr−1 min(|E|, C∥f∥L1/λ) dλ

= r
∫ C∥f∥L1 /|E|

0
λr−1|E| dλ + Cr

∫ ∞

C∥f∥L1 /|E|
λr−2∥f∥L1 dλ

= (C∥f∥L1/|E|)r|E| + C
r

1 − r
(C∥f∥L1/|E|)r−1∥f∥L1 .

Proof of Theorem 5.8. Fix f ∈ C∞
c (Rn), x ∈ Rn and ε > 0. We will show that

|Tεf(x)| ≤ C(M(|Tf |r)(x)1/r + Mf(x)), (5.5)

with C independent of ε.
Let B = B(x, ε/2) and 2B = B(x, ε). Let f1 = f12B and f2 = f12Bc = f − f1.

Then,
Tεf(x) =

∫
|x−y|>ε

K(x, y)f(y) dy = T (f12Bc)(x) = Tf2(x),

where in the second equality we used the fact that x /∈ supp(f12Bc) and the
representation formula (4.5).
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For x′ ∈ B and y ∈ 2Bc we have |x′ − x| ≤ |x − y|/2, and so

|Tf2(x) − Tf2(x′)| =
∣∣∣∣∣
∫

|x−y|>ε
(K(x, y) − K(x′, y))f(y) dy

∣∣∣∣∣
≲
∫

|x−y|>ε

|x − x′|δ

|x − y|n+δ
|f(y)| dy

≲ εδ
∞∑

k=0

∫
2kε<|x−y|≤2k+1ε

(2kε)−n−δ|f(y)| dy

≲
∞∑

k=0
(2k)−δ 1

(2k+1ε)n

∫
|x−y|≤2k+1ε

|f(y)| dy

≤
∞∑

k=0
(2k)−δMf(x) ≤ C(δ)Mf(x).

Thus, for any x′ ∈ B

|Tεf(x)| = |Tf2(x)| ≤ |Tf2(x′)|+CMf(x) ≤ |Tf(x′)|+|Tf1(x′)|+CMf(x). (5.6)

If |Tεf(x)| ≤ 3CMf(x) then (5.5) holds, so suppose that |Tεf(x)| > 3CMf(x) >
0. We define

B1 = {x′ ∈ B : |Tf(x′)| ≥ |Tεf(x)|/3},

B2 = {x′ ∈ B : |Tf1(x′)| ≥ |Tεf(x)|/3}.

Note that B = B1 ∪ B2. By Chebyshev’s inequality

|B1| ≲
1

|Tεf(x)|

∫
B

|Tf(x′)| dx′ ≤ 1
|Tεf(x)|

|B| M(|Tf |)(x).

By the weak (1, 1) estimate for T

|B2| ≲
1

|Tεf(x)|
∥f1∥L1 = 1

|Tεf(x)|

∫
2B

|f | ≲ 1
|Tεf(x)|

|B| Mf(x).

Summing the two inequalities above we get

|B| ≲ 1
|Tεf(x)|

|B| (M(|Tf |)(x) + Mf(x)),

which gives (5.5) for r = 1.
To get (5.5) for 0 < r < 1, we raise (5.6) to power r, so that

|Tεf(x)|r ≲ |Tf(x′)|r + |Tf1(x′)|r + Mf(x)r.
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Averaging over x′ ∈ B and then raising to power 1/r we get

|Tεf(x)| ≲ M(|Tf |r)(x)1/r +
(

1
|B|

∫
B

|Tf1(x′)|r dx′
)1/r

+ Mf(x).

By Lemma 5.9,(
1

|B|

∫
B

|Tf1(x′)|r dx′
)1/r

≲r |B|−1∥f1∥L1 = 1
|B|

∫
2B

|f | ≲ Mf(x),

which finishes the proof.

We are ready to prove Theorem 5.3, which asserted that T∗ is of weak type
(1, 1) and strong type (p, p) for 1 < p < ∞.

Proof of Theorem 5.3. If 1 < p < ∞, the strong type (p, p) estimate for T∗ follows
from Cotlar’s inequality (5.4) with r = 1 and the strong type (p, p) estimates for
M and T .

To get the weak type (1, 1) estimate for T∗, we use (5.4) with r = 1/2 to
estimate

|{x ∈ Rn : |T∗f(x)| ≥ α}| ≤ |{x ∈ Rn : M(|Tf |1/2)(x)2 ≥ α/(2C)}|
+ |{x ∈ Rn : Mf(x) ≥ α/(2C)}|.

The second term is bounded by C ′∥f∥L1/α by the weak type (1, 1) estimate for
M .

To bound the first term, let E = |{x ∈ Rn : M(|Tf |1/2)(x) ≥ α1/2/(2C)1/2}|.
We use the refined weak type (1, 1) estimate for M (5.3), and then Lemma 5.9 to
get

|E| ≲
∫

E |Tf |1/2

α1/2 ≲ |E|1/2∥f∥1/2
L1

α1/2 .

Rearranging this inequality finishes the proof.
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6 Weighted inequalities

6.1 The Ap weights
Definition 6.1 (weight). We define weights as locally integrable functions w : Rn →
[0, ∞]. Each weight gives rise to a locally finite measure, still denoted by w, via

w(A) =
∫

A
w.

We are interested in studying singular integral operators in the weighted setting
(Rn, w). Given the importance of the Hardy-Littlewood maximal operator M in
this theory, it is reasonable to start our investigation by determining the weights
for which M is of weak type (p, p) with respect to w, 1 ≤ p < ∞. By definition, M
is of weak type (p, p) with respect to w if and only if for every λ > 0 and f ∈ Lp(w)

w({x ∈ Rn : Mf(x) > λ}) ≤ C

λp

∫
|f(x)|pw(x) dx. (6.1)

Instead of the usual Hardy-Littlewood maximal operator, it will be convenient
for us to study its non-centered variant associated to cubes. For any f ∈ L1

loc(Rn)
we define

Mcf(x) = sup
Q∋x

1
|Q|

∫
Q

|f |,

where the supremum is taken over all axis-parallel cubes containing x (from now
on when we write “cubes” we always assume they are axis-parallel).
Exercise 6.2. Show that for any f ∈ L1

loc(Rn) and x ∈ Rn we have

C−1Mf(x) ≤ Mcf(x) ≤ CMf(x).

Conclude that M is of weak type (p, p) with respect to w for some 1 ≤ p < ∞ if
and only if Mc is of weak type (p, p) with respect to w.

We now derive a necessary condition for w so that Mc is of weak type (p, p)
with respect to w. Suppose that (6.1) holds. Let Q be a cube, and f ∈ L1

loc(Rn)
be such that

∫
Q f > 0. Fix 0 < λ <

∫
Q f/|Q|. Then,

Q ⊂ {x ∈ Rn : Mc(f1Q)(x) > λ},

and so the weak type (p, p) estimate implies

w(Q) ≤ C

λp

∫
Q

|f(x)|pw(x)dx.
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Taking λ →
∫

Q f/|Q| we arrive at

w(Q)
(∫

Q f

|Q|

)p

≤ C
∫

Q
|f(x)|pw(x)dx. (6.2)

Let S ⊂ Q be measurable with |S| > 0. Taking f = 1S, the inequality above gives

w(Q)
(

|S|
|Q|

)p

≤ Cw(S). (6.3)

Since this holds for all cubes Q and all S ⊂ Q with |S| > 0, we get that either
w ≡ 0 (which is not too interesting), or w(x) > 0 for a.e. x ∈ Rn.

Now there are two cases to consider.
Case p = 1. If p = 1, (6.3) becomes

w(Q)
|Q|

≤ C
w(S)
|S|

.

Let a = ess inf{w(x) : x ∈ Q}. Then, for every ε > 0 there exists Sε ⊂ Q with
|Sε| > 0 and such that for all x ∈ Sε we have w(x) ≤ a + ε. It follows that

w(Q)
|Q|

≤ C
w(Sε)
|Sε|

= C

∫
Sε

w

|Sε|
≤ C(a + ε).

Taking ε → 0, we get that

w(Q)
|Q|

≤ C ess inf
x∈Q

w(x).

Hence, for every cube Q ⊂ Rn

w(Q)
|Q|

≤ Cw(x), for a.e. x ∈ Q. (6.4)

Definition 6.3 (A1 weights). A weight w satisfies the A1 condition if (6.4) holds
for every cube Q ⊂ Rn. The positive weights w satisfying the A1 condition are
called the A1 weights, and we will write w ∈ A1 for such weights.

The smallest constant C such that (6.4) holds is called the A1 character of w,
and it is denoted by

[w]A1 := sup
Q⊂Rn

w(Q)
|Q|

∥w−1∥L∞(Q).

Exercise 6.4. Show that the A1 condition is equivalent to

Mcw(x) ≤ Cw(x) for a.e. x ∈ Rn. (6.5)
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Case 1 < p < ∞. Let 1 < p′ < ∞ be such that 1/p + 1/p′ = 1. We plug into
(6.2) the function f = w1−p′1Q,2 so that

w(Q)
(

1
|Q|

∫
Q

w1−p′
)p

≤ C
∫

Q
w(1−p′)p+1 = C

∫
Q

w1−p′
.

Rearranging, we get (
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w1−p′
)p−1

≤ C. (6.6)

Definition 6.5 (Ap weights). A weight w satisfies the Ap condition if (6.6) holds
for every cube Q ⊂ Rn. The positive weights w satisfying the Ap condition are
called the Ap weights, and we will write w ∈ Ap for such weights.

The smallest constant C such that (6.6) holds is called the Ap character of w,
and it is denoted by

[w]Ap
:= sup

Q⊂Rn

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w1−p′
)p−1

.

Note that the definition for p = 2 is particularly nice, since the A2 condition
is just (

1
|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w−1
)

≤ C.

The A1 and Ap conditions are often called Muckenhoupt conditions. It turns out
that they are not only necessary for the weak estimates for Mc, but also sufficient.

Proposition 6.6. For 1 ≤ p < ∞ the Hardy-Littlewood maximal operator is of
weak type (p, p) with respect to a weight w if and only if w ∈ Ap.

Proof. Assume that w ∈ Ap and f ∈ Lp(w). Our goal is to show

w({x ∈ Rn : Mcf(x) > 4nλ}) ≤ C

λp

∫
|f(x)|pw(x) dx. (6.7)

Assume additionally that f ∈ L1(Rn). Let B ⊂ D(Rn) be the family of cubes given
by the Calderón-Zygmund decomposition of f at level λ (see Proposition 4.15).
We claim that

{x ∈ Rn : Mcf(x) > 4nλ} ⊂
⋃

Q∈B
3Q (6.8)

2Here we implicitly assume that w1−p′ is locally integrable. To avoid this, we could consider
min(w1−p′

, N) instead, and at the end take N → ∞.
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Let x ∈ Rn be such that Mcf(x) > 4nλ, and let x ∈ P ⊂ Rn be a cube such
that 1

|P |
∫

P |f | > 4nλ. Fix k ∈ Z such that 2−k−1 ≤ ℓ(P ) < 2−k. Note that P

may intersect at most 2n cubes from Dk(Rn), and we denote them by R1, . . . , Rm,
m ≤ 2n.

If one of the Rj’s is contained in some Q ∈ B, then P ⊂ 3Rj ⊂ 3Q and we are
done with (6.8). So suppose that none of Rj’s is contained in any Q ∈ B. Then,
by the definition of bad cubes B (see the proof of Proposition 4.15) we get that
for all 1 ≤ j ≤ m

1
|Rj|

∫
Rj

|f | ≤ λ.

Hence,
1

|P |

∫
P

|f | ≤
m∑

j=1

ℓ(Rj)n

ℓ(P )n

1
|Rj|

∫
Rj

|f | ≤ m 2nλ ≤ 4nλ,

which is a contradiction with 1
|P |
∫

P |f | > 4nλ. This finishes the proof of (6.8).
Now we argue separately for p = 1 and p > 1. Suppose first that p = 1. It

follows from (6.8) and the Calderón-Zygmund decomposition property (4.9) that

w({x ∈ Rn : Mcf(x) > 4nλ}) ≤
∑
Q∈B

w(3Q) ≤ 1
λ

∑
Q∈B

w(3Q)
|Q|

∫
Q

|f |

≤ C

λ

∑
Q∈B

∫
Q

|f(x)|w(3Q)
|3Q|

dx.

By the A1 condition, we have w(3Q)
|3Q| ≤ w(x) for a.e. x ∈ 3Q, and so

w({x ∈ Rn : Mcf(x) > 4nλ}) ≤ C

λ

∑
Q∈B

∫
Q

|f(x)|w(x) dx ≤ C

λ

∫
Rn

|f(x)|w(x) dx,

which gives (6.7) for p = 1 and f ∈ L1(w) ∩ L1(Rn).
Assume now p > 1. By Hölder’s inequality and the defintion of Ap weights, for

any cube P

(
1

|P |

∫
P

|f |
)p

=
(

1
|P |

∫
P

|f |w1/pw−1/p

)p

≤
(

1
|P |

∫
P

|f |pw

)(
1

|P |

∫
P

w−p′/p

)p/p′

=
(

1
|P |

∫
P

|f |pw

)(
1

|P |

∫
P

w1−p′
)p−1

≤ C

(
1

|P |

∫
P

|f |pw

)(
|P |

w(P )

)
= C

1
w(P )

∫
P

|f |pw. (6.9)
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Taking P = 3Q and f = 1Q for some cube Q, it follows that w(3Q) ≤ C3npw(Q).
We use again (6.8), the estimate (6.9), and (4.9), to get

w({x ∈ Rn : Mcf(x) > 4nλ}) ≤
∑
Q∈B

w(3Q) ≲
∑
Q∈B

w(Q)

≲
∑
Q∈B

(
1

|Q|

∫
Q

|f |
)−p ∫

Q
|f |pw

≤
∑
Q∈B

λ−p
∫

Q
|f |pw ≤ λ−p

∫
Rn

|f |pw.

This gives (6.7) for 1 < p < ∞ and f ∈ Lp(w) ∩ L1(Rn).
It remains to show that L1(Rn) is dense in Lp(w) for 1 ≤ p < ∞, and we leave

this as an exercise.

Exercise 6.7. Let 1 ≤ p < ∞ and w ∈ Ap. Show that L1(Rn) is dense in Lp(w).
Hint: For any f ∈ Lp(w) prove that fR := f1B(0,R) ∈ L1(Rn) for all R > 0,

and that fR → f in Lp(w) as R → ∞. The estimate (6.9) and its modification for
p = 1 may be helpful.

We list a few basic properties of the Ap weights. Below Ln denotes the Lebesgue
measure on Rn.

Lemma 6.8. We have Ap ⊂ Aq for 1 ≤ p ≤ q < ∞. Moreover, for any w ∈ Ap

we have

(i) for any cube Q and E ⊂ Q measurable(
|E|
|Q|

)p

≤ C
w(E)
w(Q)

. (6.10)

In particular, Ln ≪ w.

(ii) For every α ∈ (0, 1) there exists β ∈ (0, 1) such that for every cube Q and
E ⊂ Q measurable

|E| ≤ α|Q| ⇒ w(E) ≤ βw(Q).

In particular, w ≪ Ln.

(iii) w is doubling: for any ball B we have w(2B) ≤ Cw(B).

(iv) if p > 1, then w1−p′ ∈ Ap′.
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Proof. Suppose that w ∈ Ap and q > p. If p = 1, then(
1

|Q|

∫
Q

w1−q′
)q−1

≤ ess sup
x∈Q

w(x)−1 =
(

ess inf
x∈Q

w(x)
)−1

≤ C

(
w(Q)
|Q|

)−1

,

so w ∈ Aq. For p > 1, it follows from Hölder’s inequality that

(
1

|Q|

∫
Q

w1−q′
)q−1

≤

 1
|Q|

(∫
Q

w1−p′
) 1−q′

1−p′

|Q|1− 1−q′
1−p′


q−1

=
(

1
|Q|

∫
Q

w1−p′
)p−1

.

Thus, Ap ⊂ Aq.
To show (i) for w ∈ A1, note that by integrating the A1 condition (6.4) over E

we have
|E| · w(Q)

|Q|
≤ w(E).

If w ∈ Ap with p > 1, then by plugging f = 1E into (6.9) we get the desired
inequality.

To get (ii), observe that replacing E by Q \ E in (6.10) gives(
1 − |E|

|Q|

)p

≤ C

(
1 − w(E)

w(Q)

)
,

and so |E| ≤ α|Q| implies

(1 − α)p ≤ C

(
1 − w(E)

w(Q)

)
,

which is equivalent to

w(E) ≤
(

1 − (1 − α)p

C

)
w(Q).

This gives the desired inequality with β = 1 − (1−α)p

C
.

The doubling property (iii) follows immediately from (6.10) by taking E = B
and Q a cube containing 2B with ℓ(Q) ∼ r(B).

Finally, to get (iv) observe that the Ap′ condition for w1−p′ is
(

1
|Q|

∫
Q

w1−p′
)(

1
|Q|

∫
Q

w(1−p′)(1−p)
)p′−1

≤ C,

and since (1 − p′)(1 − p) = 1, this is the Ap condition raised to power p′ − 1.
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Exercise 6.9. Prove that in the definition of the Ap condition we may replace cubes
by balls and still get the same class of weights. More specifically,

sup
Q⊂Rn

(
1

|Q|

∫
Q

w

)(
1

|Q|

∫
Q

w1−p′
)p−1

∼ sup
B⊂Rn

(
1

|B|

∫
B

w

)(
1

|B|

∫
B

w1−p′
)p−1

,

where Q are cubes and B are balls.
Exercise 6.10. Prove that w(x) = |x|a is an Ap weight on Rn, 1 < p < ∞, if and
only if −n < a < n(p − 1).

Hint: Show first that w(x) = |x|a is a doubling weight (w(2B) ≤ Cw(B) for
all balls) if and only if a > −n. Consider separately balls B = B(x0, R) such that
|x0| ≥ 3R, and such that |x0| < 3R.
Exercise 6.11. Show that

w(x) =

log 1
|x| |x| ≤ e−1

1 |x| > e−1

is an A1 weight.

6.2 Reverse Hölder inequality
In this subsection we will talk about weighted strong type estimates for the Hardy-
Littlewood maximal operator M .

Suppose that w ∈ Ap for some p ≥ 1. Observe that by Lemma 6.8 (i), we have
L∞(Rn) = L∞(w) with equality of norms. In particular, the Hardy-Littlewood
maximal operator is of strong type (∞, ∞) with respect to w.

By Proposition 6.6 we also have that M is of weak type (p, p) with respect to
w, and so by the Marcinkiewicz interpolation theorem we get that M is of strong
type (q, q) with respect to w for all p < q < ∞, in the sense that∫

|Mf(x)|q w(x) dx ≤ C
∫

|f(x)|q w(x) dx.

It turns out that the same is true at the endpoint q = p, and we have the following
improvement over Proposition 6.6.

Theorem 6.12. For 1 < p < ∞ the Hardy-Littlewood maximal operator is of
strong type (p, p) with respect to a weight w if and only if w ∈ Ap.

To prove this, we will establish an important property of Muckenhoupt weights
called the reverse Hölder inequality.
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Theorem 6.13. Let 1 ≤ p < ∞ and w ∈ Ap. There exist constants C ≥ 1 and
ε > 0, depending only on p and [w]Ap, such that for any cube Q

(
1

|Q|

∫
Q

w1+ε

)1/(1+ε)

≤ C

|Q|

∫
Q

w.

Note that the converse estimate holds (with C = 1) by Hölder’s inequality,
hence the name “reverse Hölder inequality”.

Proof. Fix w ∈ Ap and a cube Q. Without loss of generality, we may assume that
Q is a dyadic cube (otherwise we replace w by a translated and dilated weight w′).

Consider an increasing sequence λk → ∞, with λ0 = w(Q)/|Q|. For every
k ∈ N let Bk be the family of dyadic sub-cubes of Q given by the Calderón-
Zygmund decomposition of w1Q at the level λk (see Proposition 4.15). That is,
Bk is the family of maximal sub-cubes of Q satisfying

λk <
w(P )
|P |

≤ 2nλk, P ∈ Bk. (6.11)

Let Ωk := ⋃
P ∈Bk

P , and observe that

w(x) ≤ λk for a.e. x /∈ Ωk. (6.12)

Note that every cube in Bk is contained in some cube from Bk−1 (this follows from
the definition of Bk and the fact that λk > λk−1). In particular, Ωk ⊂ Ωk−1.

Given P ∈ Bk−1 let Bk(P ) be the family of cubes from Bk contained in P .
Then,

|P ∩ Ωk| =
∑

R∈Bk(P )
|R|

(6.11)
≤ 1

λk

∑
R∈Bk(P )

w(R) ≤ 1
λk

w(P )
(6.11)
≤ 2nλk−1

λk

|P |.

Let λk := 2(n+1)kλ0 = 2(n+1)kw(Q)/|Q|. Then the estimate above gives

|P ∩ Ωk| ≤ |P |
2

. (6.13)

By Lemma 6.8 (ii) (applied with α = 1/2) we get that there exists β = β(p, [w]Ap) ∈
(0, 1) such that

w(P ∩ Ωk) ≤ βw(P )

Summing over all P ∈ Bk−1 gives w(Ωk) ≤ βw(Ωk−1), and iterating this inequality
yields

w(Ωk) ≤ βkw(Ω0).
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We may use (6.13) similarly to get |Ωk| ≤ 2−k|Ω0|, and so∣∣∣∣∣∣
⋂
k≥0

Ωk

∣∣∣∣∣∣ = lim
k→∞

|Ωk| = 0.

Hence,

1
|Q|

∫
Q

w1+ε = 1
|Q|

∫
Q\Ω0

w1+ε + 1
|Q|

∑
k≥0

∫
Ωk\Ωk+1

w1+ε

(6.12)
≤ λε

0
w(Q \ Ω0)

|Q|
+ 1

|Q|
∑
k≥0

λε
kw(Ωk \ Ωk+1) ≤ λε

0
w(Q)
|Q|

+ 1
|Q|

∑
k≥0

λε
kw(Ωk)

≤ λε
0
w(Q)
|Q|

+ λε
0
w(Q)
|Q|

∑
k≥0

2(n+1)kεβk.

Choosing ε > 0 so small that 2(n+1)εβ < 1, we get that the geometric series above
converges, and so

1
|Q|

∫
Q

w1+ε ≤ Cλε
0
w(Q)
|Q|

= C

(
w(Q)
|Q|

)1+ε

.

An easy corollary of the reverse Hölder inequality is the self-improving property
of Ap weights.
Corollary 6.14. For every p > 1 and w ∈ Ap there exists ε > 0 such that
w ∈ Ap−ε. In particular,

Ap =
⋃

q∈[1, p)
Aq.

Proof. By Lemma 6.8 (iii) we have w1−p′ ∈ Ap′ . The reverse Hölder inequality for
w1−p′ asserts that for some ε > 0(

1
|Q|

∫
Q

w(1−p′)(1+ε)
)1/(1+ε)

≤ C

|Q|

∫
Q

w(1−p′).

Let q > 1 be such that 1 − q′ = (1 − p′)(1 + ε). Then q < p, and the inequality
above together with the Ap condition give w ∈ Aq.

Now we can easily prove the strong type (p, p) estimate with respect to Ap

weights for the Hardy-Littlewood maximal operator, p > 1.

Proof of Theorem 6.12. Suppose that w ∈ Ap with p > 1. Then, w ∈ Aq for some
q < p, and we already know that M is of strong type (r, r) with respect to w for all
q < r < ∞ (see the discussion above Theorem 6.12). In particular, it is of strong
type (p, p) with respect to w.
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6.3 Characterization of A1 weights
In this subsection we prove the following characterization of the A1 weights.
Proposition 6.15. Suppose that f ∈ L1

loc(Rn) is such that Mcf(x) < ∞ for a.e.
x ∈ Rn. Then, for every 0 < s < 1 the weight w = (Mcf)s is an A1 weight, with
[w]A1 depending only on s, and not on f .

Conversely, for every w ∈ A1 there exists f ∈ L1
loc(Rn), 0 < s < 1 and

C = C([w]A1) such that

w(x) ≤ Mcf(x)s ≤ Cw(x) for a.e. x ∈ Rn. (6.14)

Proof. Assume that f ∈ L1
loc(Rn) and Mcf(x) < ∞ for a.e. x ∈ Rn. We need to

show that for every cube Q and a.e. x ∈ Q

1
|Q|

∫
Q

Mcf(y)s dy ≤ CMcf(x)s. (6.15)

Fix Q, and observe that

Mcf(y)s ≤ Mc(f12Q)(y)s + Mc(f12Qc)(y)s.

By Lemma 5.9
1

|Q|

∫
Q

Mc(f12Q)(y)s dy ≲s
|Q|1−s

|Q|
∥f12Q∥s

L1 =
(

1
|Q|

∫
2Q

|f | dy

)s

≲ Mcf(x)s

for every x ∈ Q.
Now we want to estimate Mc(f12Qc)(y) for y ∈ Q. Observe that if R is a

cube such that y ∈ R and
∫

R |f12Qc| > 0, then R ∩ Q ̸= ∅ and R \ 2Q ̸= ∅. In
particular, ℓ(R) ≥ ℓ(Q)/2, and Q ⊂ 5R. It follows that

1
|R|

∫
R

|f12Qc(z)|dz ≤ 5n

|5R|

∫
5R

|f |dz ≲ Mcf(x).

Taking supremum over cubes R containing y, we get that Mc(f12Qc)(y) ≲ Mcf(x)
for every y ∈ Q, and so

1
|Q|

∫
Q

Mc(f12Qc)(y)s dy ≤ CMcf(x)s.

This finishes the proof of (6.15) and the first half of the proposition.
Now suppose that w ∈ A1. By Theorem 6.13, there exists ε > 0 such that(

1
|Q|

∫
Q

w1+ε

)1/(1+ε)

≤ C
w(Q)
|Q|

.

Together with the A1 condition, this implies that M(w1+ε)(x)1/(1+ε) ≤ Cw(x) for
a.e. x ∈ Rn. Since we also have w1+ε(x) ≤ M(w1+ε)(x), taking f = w1+ε and
s = 1/(1 + ε) we get (6.14).
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Proposition 6.15 is a useful tool for coming up with examples of A1 weights.
The following lemma allows us to construct Ap weights using A1 weights.

Lemma 6.16. Let 1 < p < ∞. If w1, w2 ∈ A1, then w = w1w
1−p
2 is an Ap weight.

Proof. We present the proof for p = 2, and leave the general case as an exercise.
We need to show that for every cube Q(

1
|Q|

∫
w1w

−1
2

)(
1

|Q|

∫
w−1

1 w2

)
≤ C.

By the A1 condition for w1 and w2, we have
(

1
|Q|

∫
w1w

−1
2

)(
1

|Q|

∫
w−1

1 w2

)

≤ (ess inf
x∈Q

w2(x))−1
(

1
|Q|

∫
w1

)
(ess inf

x∈Q
w1(x))−1

(
1

|Q|

∫
w2

)
≤ [w1]A1 [w2]A1 .

Exercise 6.17. Modify the proof of Lemma 6.16 to cover all 1 < p < ∞.
Remark 6.18. It turns out that the converse of Lemma 6.16 is also true: any Ap

weight w can be written as w = w1w
1−p
2 for some w1, w2 ∈ A1. This important

result is known as the factorization of Ap weights, see Chapter V.5.3 in [Ste93] or
Section 4 in [CU17] for a proof.

6.4 Extrapolation of weights
One of the key results in the theory of Ap weights is the Rubio de Francia extrap-
olation theorem, which says that a weighted inequality obtained for one exponent
1 < r < ∞ implies the same for all 1 < p < ∞.

Theorem 6.19. Let 1 < p0 < ∞. Suppose that an operator T is of strong type
(p0, p0) with respect to all weights w ∈ Ap0, with operator norm depending only on
[w]Ap0

. Then, T is of strong type (p, p) with respect to all weights w ∈ Ap and all
1 < p < ∞.

Proof. First, assume that w ∈ A1. We will show that T is of strong type (p, p)
with respect to w for all 1 < p < p0.

Let f ∈ Lp(w). Note that Mcf(x) < ∞ for a.e. x ∈ Rn (because Mcf ∈ Lp(w)
by the strong (p, p) estimate with respect to w for Mc). Thus, by Proposition 6.15
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we have (Mcf)(p0−p)/(p0−1) ∈ A1 (note that p0 − p < p0 − 1). Then, by Lemma 6.16
the weight w · (Mcf)p−p0 is in Ap0 . Hence,∫

|Tf |pw =
∫

|Tf |pw(Mcf)−(p0−p)p/p0(Mcf)(p0−p)p/p0

≤
(∫

|Tf |p0w(Mcf)p−p0

)p/p0 (∫
(Mcf)pw

)1−p/p0

≲
(∫

|f |p0w(Mcf)p−p0

)p/p0 (∫
|f |pw

)1−p/p0

≤
(∫

|f |p0w|f |p−p0

)p/p0 (∫
|f |pw

)1−p/p0

=
∫

|f |pw,

where the second inequality uses the strong (p0, p0) estimate for T with respect
to w · (Mcf)p−p0 ∈ Ap0 and the strong (p, p) estimate for Mc with respect to
w ∈ A1 ⊂ Ap, and the third inequality uses the fact that f(x) ≤ Mcf(x) a.e. and
that p − p0 < 0. This shows that T is of strong type (p, p) with respect to w.

Now assume that w ∈ Ap for some 1 < p < ∞. We will show that T is of
strong type (p, p) with respect to w.

By the self-improving property of Ap weights (Corollary 6.14), there exists some
1 < q < p such that w ∈ Ap/q. Without loss of generality, assume that 1 < q < p0.
By duality, there exists u ∈ L(p/q)′(w) of norm 1 such that(∫

Rn
|Tf |pw

)q/p

=
(∫

Rn
(|Tf |q)p/qw

)q/p

=
∫
Rn

|Tf |quw. (6.16)

We claim that for a > 1 small enough we have Mc(|uw|a) < ∞ a.e. Indeed, since
w ∈ Ap/q, we have w1−(p/q)′ ∈ A(p/q)′ by Lemma 6.8 (iv). By the self-improving
property of Ap weights, w1−(p/q)′ ∈ A(p/q)′/a for a > 1 small enough. But then by
Theorem 6.12∫

Mc(|uw|a)(p/q)′/aw1−(p/q)′ ≲
∫

|uw|(p/q)′
w1−(p/q)′ =

∫
|u|(p/q)′

w = 1, (6.17)

and so in particular Mc(|uw|a) < ∞ a.e.
By Proposition 6.15, Mc(|uw|a)1/a is an A1 weight. Thus, we know by the first

half of the proof that T is of strong type (q, q) with respect to Mc(|uw|a)1/a. Since
|uw| ≤ Mc(|uw|a)1/a, it follows that∫

Rn
|Tf |quw ≤

∫
Rn

|Tf |qMc(|uw|a)1/a ≲
∫
Rn

|f |qMc(|uw|a)1/a

=
∫
Rn

|f |qwq/pMc(|uw|a)1/aw−q/p

≤
(∫

|f |pw
)q/p (∫

Mc(|uw|a)(p/q)′/aw1−(p/q)′
)1/(p/q)′ (6.17)

≲
(∫

|f |pw
)q/p

.
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Together with (6.16), this shows that T is of strong type (p, p) with respect to
w.

For some applications of the extrapolation theorem, and for more information
about the theory of Ap weights, see e.g. the lecture notes [CU17].
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7 Sparse domination and the A2 theorem
In this course we have not paid much attention to the constants appearing in the
estimates we proved. This is about to change.

It has been known for a long time that if w ∈ Ap and T is a Calderón-Zygmund
operator on Rn, then T is of strong type (p, p) with respect to w, i.e.,

∥Tf∥Lp(w) ≤ C∥f∥Lp(w),

with C depending on p, n, T, and [w]Ap , see e.g. Section 7.4 in [Duo01]. Due to
certain applications in PDEs, the precise dependence of C on [w]Ap was of interest,
see [FKP91, AIS01, PV02]. It was conjectured that for p = 2 the dependence was
linear, so that

∥Tf∥L2(w) ≤ C[w]A2∥f∥L2(w), (7.1)

with C = C(n, T ). This estimate came to be known as the A2 conjecture, and
after many partial results it was finally confirmed in 2012 by Hytönen [Hyt12].
The proof of Hytönen was quite complicated, and we will follow a much simpler
proof due to Lerner [Ler16], which uses the sparse domination technique.

The following exercise demonstrates that the estimate (7.1) is sharp, in the
sense that it would be false if we replaced [w]A2 by [w]sA2 for any s < 1.
Exercise 7.1. For any s ∈ (0, 1) let w = |x|1−s be a weight on R.

(i) Show that w ∈ A2, and [w]A2 ≤ s−1.

(ii) Given fs(x) = xs−11(0,1)(x), show that ∥fs∥L2(ws) ≤ s−1/2.

(iii) Prove that ∥Hfs∥L2(ws) ≥ Cs−3/2, and conclude that (7.1) is sharp.

Remark 7.2. By the A2 theorem, we get that all Calderón-Zygmund operators are
of strong type (2, 2) with respect to all A2 weights. By the extrapolation of Ap

weights (Theorem 6.19), it follows that Calderón-Zygmund operators are of strong
type (p, p) for all Ap weights, 1 < p < ∞. Moreover, by a sharp version of the
extrapolation theorem [DGPP05] one can get the sharp estimate

∥Tf∥Lp(w) ≤ C[w]max(1,1/(p−1))
Ap

∥f∥Lp(w).

The same estimate can be obtained directly from Lerner’s proof we will present,
but for the sake of simplicity we will restrict attention to p = 2.
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7.1 Sparse and Carleson families
Definition 7.3 (sparse family). Let 0 < η ≤ 1. We will say that a family of cubes
S is η-sparse if for every Q ∈ S there exists a measurable subset EQ ⊂ Q such
that |EQ| ≥ η|Q| and {EQ}Q∈S are pairwise disjoint.

Note that in the definition above we do not require the cubes in S to be dyadic,
although this will often be the case.
Example 7.4. Any disjoint family of cubes is 1-sparse (just take EQ = Q).
Example 7.5. If k < l, then S = Dk ∪Dl is 1/2-sparse. To see this, for each Q ∈ Dl

let EQ be the lower half of Q, and for each P ∈ Dk let

EP := P \
⋃

Q∈Dl

EQ.

More generally, S = Dk1 ∪ · · · ∪ Dkm is 1/m-sparse, and we leave the proof as
an exercise.

In the examples above the cubes from sparse families had only bounded inter-
section, in the sense that ∑Q∈S 1Q ∈ L∞(Rn). The following exercise shows that
this does not need to be the case.
Exercise 7.6. Prove that in Rn the family of all dyadic cubes containing 0 is (1 −
2−n)-sparse.

For dyadic cubes, the notion of sparseness is equivalent to the Carleson packing
condition, which is also widely used in harmonic analysis. We will not need this
fact for the proof of the A2 conjecture, but it helps to gain intuition regarding
sparse families.
Definition 7.7 (Carleson family). Let S ⊂ D. We say that S is Λ-Carlson if for
every R ∈ D ∑

Q∈S, Q⊂R

|Q| ≤ Λ|R|. (7.2)

The following result is due to Lerner and Nazarov [LN19].

Proposition 7.8. Let S ⊂ D. Then, S is η-sparse if and only if it is η−1-Carleson.

Proof. One of the implications is very easy. If S is η-sparse, then for any R ∈ D∑
Q∈S, Q⊂R

|Q| ≤ η−1 ∑
Q∈S, Q⊂R

|EQ| ≤ η−1|R|,

where in the second inequality we used the fact that EQ are pairwise disjoint.
Proving the converse inequality is more laboursome. Suppose that S is η−1-

Carleson. If we knew that S ⊂ ⋃
k≤K Dk for some K ∈ Z, that is, there is a

“bottom layer” of S, then we could argue inductively as follows.
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For every Q ∈ S ∩ DK let EQ be an arbitrary measurable subset of Q with
|EQ| = η|Q|. If EQ has already been defined for Q ∈ SN

K := S ∩ ⋃N≤k≤K Dk, then
we define EQ ⊂ Q for Q ∈ S ∩ DN−1 as an arbitrary measurable subset of

Q \
⋃

P ∈S, P(Q

EP

such that |EQ| = η|Q|. It is possible to find such a set because
∣∣∣∣∣∣Q \

⋃
P ∈S, P(Q

EP

∣∣∣∣∣∣ = |Q| −
∑

P ∈S, P(Q

|EP | ≥ |Q| − η
∑

P ∈S, P(Q

|P |

= (1 + η)|Q| − η
∑

P ∈S, P ⊂Q

|P | ≥ η|Q|, (7.3)

where in the last inequality we used the η−1-Carleson condition for S. Using this
“upwards” induction, we eventually define EQ for every Q ∈ S, and it is easy to
see that {EQ}Q∈S are pairwise disjoint.

In the absence of the “bottom layer”, we have to artificially introduce it. Given
an integer K ∈ Z, let SK := S ∩ ⋃

k≤K Dk. For all Q ∈ SK we could define sets
EQ as above, but since we would like to take a limit K → ∞, we have to be more
careful than that.

For every Q ∈ S ∩ DK let
EK

Q := η1/nQ,

so that |EQ| = η|Q| (recall that CQ denotes the cube with the same center as Q
and with sidelength Cℓ(Q)).

If EK
Q has already been defined for Q ∈ SN

K , then for Q ∈ S ∩ DN−1 we define

F K
Q :=

⋃
P ∈SK , P(Q

EK
P ,

and
EK

Q := tQ \ F K
Q ,

where t ∈ (0, 1] is the largest number such that |EK
Q | = η|Q|. To see that such t

exists, note that by (7.3) we have |Q \ F K
Q | ≥ η|Q|. The function f(t) := |tQ \ F K

Q |
is continuous, monotone, and since f(1) ≥ η|Q| and f(0) = 0, we get f(t) = η|Q|
for some t ∈ (0, 1]. We denote by tK

Q the largest such t.
Thus, we have EK

Q ⊂ Q and F K
Q ⊂ Q defined for all Q ∈ SK . By definition,

the sets {EK
Q }Q∈SK

are pairwise disjoint and |EK
Q | = η|Q|.

Let GK
Q = EK

Q ∪ F K
Q . We claim that for any Q ∈ SK we have

GK
Q ⊂ GK+1

Q . (7.4)
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First, assume Q ∈ DK . Then, we have GK
Q = EK

Q = η1/nQ. On the other hand,

GK+1
Q = tQ ∪ F K+1

Q ,

where t = tK+1
Q is such that |tQ \ F K+1

Q | = η|Q|. In particular, t ≥ η1/n, so that
(7.4) holds for Q ∈ S ∩ DK .

Now we proceed by induction. Suppose (7.4) holds for P ∈ SN
K , and let Q ∈

S ∩ DN−1. Observe that

F K
Q =

⋃
P ∈SK , P(Q

EK
P =

⋃
P ∈SK , P(Q

GK
P ,

and so by the inductive assumption (7.4) we have

F K
Q ⊂ F K+1

Q (7.5)

Recall that tK
Q ∈ (0, 1] is the largest number such that |tK

Q Q\F K
Q | = η|Q|. By (7.5)

|tQ \ F K+1
Q | ≤ |tQ \ F K

Q |,

and so
tK+1
Q ≥ tK

Q . (7.6)
Hence, (7.4) holds for Q, and this closes the induction.

Now, fix Q ∈ S. By (7.6), {tK
Q }K ⊂ (0, 1] is a non-decreasing sequence, and so

the limit
tQ := lim

K→∞
tK
Q

exists, and tQ ∈ (0, 1]. At the same time, by (7.5) the sets F K
Q are increasing in

K. We define
FQ :=

∞⋃
K=0

F K
Q , EQ := tQQ \ FQ.

Note that

|EQ| =

∣∣∣∣∣∣
∞⋂

K=0
tQQ \ F K

Q

∣∣∣∣∣∣ = lim
K→∞

|tQQ \ F K
Q | ≥ lim

K→∞
|tK

Q Q \ F K
Q | = η|Q|,

where we used the definition of tK
Q and the fact that tQ ≥ tK

Q for all K.
It remains to show that {EQ}Q∈S are pairwise disjoint. Let Q, P ∈ S, and

without loss of generality assume that Q ( P . Then, EQ ⊂ FP because

EQ ⊂ tQQ =
∞⋃

K=0
tK
Q Q ⊂

∞⋃
K=0

EK
Q ∪ F K

Q ⊂
∞⋃

K=0
F K

P = FP .

Recalling that EP ∩ FP = ∅, we get EQ ∩ EP = ∅.
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Remark 7.9. The assumption “S ⊂ D” in Proposition 7.8 can be omitted if one de-
fines the Carleson condition for families of non-dyadic cubes properly. See [Hän18]
for an extension of Proposition 7.8 to general families of Borel sets.

Proposition 7.8 can be used to prove the following.
Exercise 7.10. Suppose that S1, . . . , Sk are sparse families of dyadic cubes, and that
each Sj is ηj-sparse for some ηj ∈ (0, 1]. Show that S1 ∪ · · · ∪ Sk is 1/(∑k

j=1 η−1
j )-

sparse.

7.2 Sparse operators
For the sake of brevity, for f ∈ L1

loc(Rn) and Q ⊂ Rn we will write

fQ := 1
|Q|

∫
Q

f.

Definition 7.11 (sparse operator). If S is a sparse family of cubes, we define the
associated sparse operator as

ASf :=
∑
Q∈S

fQ1Q.

In the next subsection we will prove the following sparse domination result.
Theorem 7.12. Let T be a Calderón-Zygmund theorem. Then, for every com-
pactly supported f ∈ L1(Rn) there exists an η-sparse family of cubes S such that

|Tf(x)| ≤ CAS |f |(x) for a.e. x ∈ Rn,

with C = C(n, T ) and η = η(n).
It is not too difficult to show that sparse operators satisfy the weighted in-

equality postulated by the A2 conjecture.
Proposition 7.13. If S is an η-sparse family of cubes, then for any w ∈ A2 and
f ∈ L2(w)

∥ASf∥L2(w) ≤ C[w]A2∥f∥L2(w),

with C = C(n, η)
Together with Theorem 7.12, we easily get the A2 conjecture:

Proof of the A2 conjecture. By Theorem 7.12 and Proposition 7.13, for any com-
pactly supported f ∈ L1(Rn) ∩ L2(w) we have a sparse family S such that

∥Tf∥L2(w) ≤ C∥AS |f |∥L2(w) ≤ C[w]A2∥f∥L2(w),

and so (7.1) holds for such functions. The case of general f ∈ L2(w) follows by
the density of compactly supported functions from L1(Rn) ∩ L2(w) in L2(w) (see
Exercise 6.7).
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Now we prove Proposition 7.13. In the proof we use the following variant of
the Hardy-Littlewood maximal operator: for a Radon measure µ and f ∈ L1

loc(µ)
let

Mµf(x) = sup
r>0

1
µ(Q(x, r))

∫
Q(x,r)

|f | dµ,

where Q(x, r) denotes the cube centered at x of sidelength r. It follows from the
Besicovitch covering theorem that Mµ if of weak type (1, 1) on (Rn, µ), and for
1 < p ≤ ∞ it is of strong type (p, p) on (Rn, µ), with estimates depending only on
n and p. See Theorem 2.19 in [Mat95], or Theorem 4.35 in [Par20].

Proof of Proposition 7.13. Let EQ ⊂ Q be the disjoint subsets from the definition
of sparse families. By duality and Cauchy-Schwarz inequality, we have

∥ASf∥L2(w) = sup
∥g∥L2(w)≤1

∫
ASf(x)g(x)w(x) dx = sup

∥g∥L2(w)≤1

∑
Q∈S

fQ

∫
Q

gw

≤ sup
∥g∥L2(w)

∑
Q∈S

|w(3Q)fQ|2w(EQ)−1

1/2∑
Q∈S

(
1

w(3Q)

∫
Q

gw

)2

w(EQ)

1/2

(7.7)

Let Q ∈ S and x ∈ Q. Observe that Q ⊂ Q(x, 2ℓ(Q)) ⊂ 3Q. Hence,

1
w(3Q)

∫
Q

gw ≤ 1
w(Q(x, 2ℓ(Q)))

∫
Q(x,2ℓ(Q))

gw ≤ Mwg(x).

We have

∑
Q∈S

(
1

w(3Q)

∫
Q

gw

)2

w(EQ) ≤
∑
Q∈S

∫
EQ

|Mwg|2w ≤
∫
Rn

|Mwg|2w ≤ Cn∥g∥2
L2(w),

(7.8)
where in the second inequality we used that EQ are disjoint, and in the last in-
equality we used the strong type (2, 2) estimates for Mw with respect to w.

Let σ = w−1 ∈ A2. Then,

∑
Q∈S

|w(3Q)fQ|2w(EQ)−1 =
∑
Q∈S

(
1

σ(3Q)

∫
Q

fwσ

)2

σ(EQ) ·
(

w(3Q)2

w(EQ)
σ(3Q)2

σ(EQ)
1

|Q|2

)
.

We claim that
sup
Q∈S

w(3Q)2

w(EQ)
σ(3Q)2

σ(EQ)
1

|Q|2
≤ Cn,η[w]2A2 . (7.9)

Assuming for the moment that this is the case, we can argue as in (7.8) (just
swapping σ for w and fw for g) to get that∑

Q∈S
|w(3Q)fQ|2w(EQ)−1 ≤ Cn,η[w]2A2∥fw∥2

L2(σ) = Cn,η[w]2A2∥f∥2
L2(w).
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Together with (7.8) and (7.7), this gives ∥ASf∥L2(w) ≤ C[w]A2∥f∥L2(w), as desired.
It remains to prove (7.9). By the A2 condition for w,

w(3Q)
|Q|

σ(3Q)
|Q|

= 32n w(3Q)
|3Q|

σ(3Q)
|3Q|

≤ 32n[w]A2 ,

so it suffices to show that for all Q ∈ S

|Q|2

w(EQ)σ(EQ)
≤ Cn,η.

By Cauchy-Schwarz inequality,

|Q| ≤ η−1|EQ| = η−1
∫

EQ

w1/2σ1/2 ≤ η−1w(EQ)1/2σ(EQ)1/2,

which finishes the proof.

7.3 Auxiliary maximal operators
In the proof of Theorem 7.12 we will use a few auxiliary maximal operators. Define

MT f(x) = sup
Q∋x

ess sup
ξ∈Q

|T (f13Qc)(ξ)|,

where the sup is taken over all cubes Q containing x. Compare MT to the usual
maximal operator associated to T , which we introduced in Section 5:

T∗f(x) = sup
ε>0

∣∣∣∣∣
∫

|x−y|>ε
K(x, y)f(y) dy

∣∣∣∣∣ = sup
ε>0

|T (f1B(x,ε)c)(x)|.

We define also a local version of MT . Given a cube Q0, for x ∈ Q0 we define

MT,Q0f(x) = sup
x∈Q⊂Q0

ess sup
ξ∈Q

|T (f13Q0\3Q)(ξ)|.

Remark that

MT,Q0f(x) = sup
x∈Q⊂Q0

ess sup
ξ∈Q

|T (f13Qc)(ξ) − T (f13Qc
0
)(ξ)| ≤ 2MT f(x). (7.10)

In the remainder of this section the constant C may depend on the operator T
and dimension n.

Lemma 7.14. If f ∈ L1(Rn), then for all x ∈ Rn

MT f(x) ≤ CMf(x) + T∗f(x). (7.11)

In particular, MT is of weak type (1, 1).

48



Proof. Let x ∈ Rn, Q ∋ x be a cube, and ξ ∈ Q. Set Bx = B(x, 2 diam Q), so that
3Q ⊂ Bx. Then, by linearity of T

|T (f13Qc)(ξ)| ≤ |T (f1Bc
x
)(ξ) − T (f1Bc

x
)(x)| + |T (f1Bx\3Q)(ξ)| + |T (f1Bc

x
)(x)|.
(7.12)

The third term satisfies |T (f1Bc
x
)(x)| ≤ T∗f(x). Regarding the second term, by

the size condition of the kernel

|T (f1Bx\3Q)(ξ)| =
∣∣∣∣∣
∫

Bx\3Q
K(ξ, y)f(y) dy

∣∣∣∣∣ ≤
∫

Bx\3Q

1
|ξ − y|n

|f(y)| dy

≤ C
1

|Bx|

∫
Bx

|f | ≤ CMf(x).

Finally, we estimate the first term from the RHS of (7.12) using the smoothness
of the kernel:

|T (f1Bc
x
)(ξ) − T (f1Bc

x
)(x)| =

∣∣∣∣∣
∫

Bc
x

(K(ξ, y) − K(x, y))f(y) dy

∣∣∣∣∣
≤ C

∫
Bc

x

|x − ξ|δ

|x − y|n+δ
|f(y)| dy ≤ C

∫
Bc

x

ℓ(Q)δ

|x − y|n+δ
|f(y)| dy

= Cℓ(Q)δ
∑
k≥0

∫
2k+1Bx\2kBx

1
|x − y|n+δ

|f(y)| dy

≤ Cℓ(Q)δ
∑
k≥0

(2kℓ(Q))−n−δ
∫

2k+1Bx

|f(y)| dy ≤ CMf(x).

This shows (7.11). The weak (1, 1) estimate for MT follows from (7.11) and weak
(1, 1) estimates for M and T∗.

Recall that for every Lebesgue measurable f : Rn → R a.e. x ∈ Rn is a point
of approximate continuity, which means that for every ε > 0

lim
r→0

|{y ∈ B(x, r) : |f(y) − f(x)| < ε}|
|B(x, r)|

= 1,

see Section 1.7.2 in [EG91].

Lemma 7.15. If f ∈ L1(Rn), then for a.e. x ∈ Q0

|T (f13Q0)(x)| ≤ C|f(x)| + MT,Q0f(x). (7.13)

Proof. Let x ∈ int(Q0) be a Lebesgue point for f , and a point of approximate
continuity for T (f13Q0). Fix ε > 0, so that

E(x, r) = {y ∈ B(x, r) : |T (f13Q0)(y) − T (f13Q0)(x)| < ε}
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satisfies limr→0 |E(x, r)|/|B(x, r)| = 1.
Note that for every r > 0 we have B(x, r) ⊂ Q(x, 2r), where Q(x, 2r) is the

cube centered at x of sidelength 2r. Let r > 0 be so small that Q(x, 2r) ⊂ Q0.
Then, for a.e. y ∈ E(x, r)

|T (f13Q0)(x)| ≤ |T (f13Q0)(y)| + ε = |T (f13Q0\3Q(x,2r))(y) + T (f13Q(x,2r))(y)| + ε

≤ MT,Q0(x) + |T (f13Q(x,2r))(y)| + ε,

and so
|T (f13Q0)(x)| ≤ MT,Q0(x) + ess inf

ξ∈E(x,r)
|T (f13Q(x,2r))(ξ)| + ε.

Note that by the weak (1, 1) estimate for T

|E(x, r)| ≤
∣∣∣{y ∈ Rn : |T (f13Q(x,2r))(y)| ≥ ess inf

ξ∈E(x,r)
|T (f13Q(x,2r))(ξ)|}

∣∣∣
≤ C

ess infξ∈E(x,r) |T (f13Q(x,2r))(ξ)|

∫
3Q(x,2r)

|f |.

Hence,

|T (f13Q0)(x)| ≤ C

|E(x, r)|

∫
3Q(x,2r)

|f | + MT,Q0(x) + ε

r→0−−→ C ′|f(x)| + MT,Q0(x) + ε,

where we used limr→0 |E(x, r)|/|B(x, r)| = 1 and that x is a Lebesgue point of f .
Taking ε → 0 finishes the proof of (7.13).

7.4 Sparse domination of Calderón-Zygmund operators
In this subsection we prove Theorem 7.12, which we recall below.

Theorem. Let T be a Calderón-Zygmund theorem. Then, for every compactly
supported f ∈ L1(Rn) there exists an η-sparse family of cubes S such that

|Tf(x)| ≤ CAS |f |(x) for a.e. x ∈ Rn, (7.14)

with C = C(n, T ) and η = η(n).

We begin by proving the following local version of (7.14).

Lemma 7.16. For any cube Q0 there exists a 1
2-sparse family S of cubes contained

in Q0 such that

|T (f13Q0)(x)| ≤ C
∑
Q∈S

|f |3Q1Q(x) for a.e. x ∈ Q0. (7.15)
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Proof. Without loss of generality assume that Q0 ∈ D. Denote by D(Q0) the
dyadic subcubes of Q0. To prove (7.15), it suffices to prove the following recursive
estimate: for any Q0 ∈ D there exists a family F = F(Q0) ⊂ D(Q0) of pairwise
disjoint cubes such that ∑P ∈F(Q0) |P | ≤ 1

2 |Q0| and

|T (f13Q0)(x)|1Q0(x) ≤ C|f |3Q01Q0(x) +
∑

P ∈F(Q0)
|T (f13P )(x)|1P (x) (7.16)

for a.e. x ∈ Q0. Indeed, to prove (7.15) it suffices to iterate the estimate (7.16).
Set S0 := {Q0}, and if Sk has already been defined, we set

Sk+1 :=
⋃

P ∈Sk

F(P )

and S := ⋃
k≥0 Sk. To see that S is 1

2 -sparse, just take

EQ := Q \
⋃

P ∈S, P(Q

P = Q \
⋃

P ∈F(Q)
P

for any Q ∈ S, so that |EQ| ≥ 1
2 |Q|. Iterating (7.16), we get for a.e. x ∈ Q0

|T (f13Q0)|1Q0(x) ≤ C|f |3Q0 +
∑

P ∈S1

|T (f13P )(x)|1P (x)

≤ C|f |3Q0 +
∑

P ∈S1

C|f |3P +
∑

P ∈S1

∑
Q∈F(P )

|T (f13Q)(x)|1Q(x)

= C|f |3Q0 +
∑

P ∈S0

C|f |3P +
∑

P ∈S2

|T (f13P )(x)|1P (x)

≤
k∑

j=0

∑
P ∈Sj

C|f |3P +
∑

P ∈Sk+1

|T (f13P )(x)|1P (x)

for any k ≥ 0. Note that ∑P ∈Sk
|P | ≤ 1

2
∑

P ∈Sk−1 |P | ≤ 2−k|Q0|, and so
∑

P ∈Sk+1

|T (f13P )(x)|1P (x) k→0−−→ 0 for a.e. x ∈ Q0.

Thus, taking k → ∞ in the previous estimate yields (7.15) for a.e. x ∈ Q0.
Now our goal is to establish (7.16). First, observe that for any family F ⊂

D(Q0) of pairwise disjoint cubes we have

|T (f13Q0)|1Q0 = |T (f13Q0)|1Q0\
⋃

P ∈F P +
∑

P ∈F
|T (f13Q0)|1P

≤ |T (f13Q0)|1Q0\
⋃

P ∈F P +
∑

P ∈F
|T (f13Q0\3P )|1P +

∑
P ∈F

|T (f13P )|1P .

51



Hence, to prove (7.16) we need to find a disjoint family F ⊂ D(Q0) such that∑
P ∈F |P | ≤ 1

2 |Q0| and

|T (f13Q0)|1Q0\
⋃

P ∈F P +
∑

P ∈F
|T (f13Q0\3P )|1P ≤ C|f |3Q0 . (7.17)

Recall that by Lemma 7.14 the maximal operator MT is weak (1, 1), with estimates
depending only on n and T . Using also that MT,Q0f ≤ 2MT f (7.10), we get that
if C0 = C0(n, T ) is chosen large enough, then

E := {x ∈ Q0 : |f(x)| > C0|f |3Q0} ∪ {x ∈ Q0 : MT,Q0f(x) > C0|f |3Q0}

satisfies
|E| ≤

∫
Q0

|f |
C0|f |3Q0

+
C
∫

Q0
|f |

C0|f |3Q0

≤ 1
2n+2 |Q0|.

We apply the Calderón-Zygmund decomposition to function 1E at level λ =
2−n−1 to get a collection of disjoint dyadic cubes B ⊂ D(Q0) such that for every
P ∈ B

λ ≤ 1
|P |

∫
P

1E ≤ 2nλ,

see Proposition 4.15. This is equivalent to
|P |
2n+1 ≤ |E ∩ P | ≤ |P |

2
. (7.18)

At the same time, recall that for a.e. x outside of ⋃P ∈B P we have 1E(x) ≤ λ =
2−n−1. This means that |E \ ⋃P ∈B P | = 0. It follows that

∑
P ∈B

|P | ≤ 2n+1 ∑
P ∈B

|E ∩ P | = 2n+1|E| ≤ 2n+1

2n+2 |Q0| = 1
2

|Q0|.

We set F = B.
Note that by (7.18) for every P ∈ F we have P ∩ Ec ̸= ∅. Thus, there exists

x ∈ P such that
MT,Q0f(x) ≤ C0|f |3Q0 ,

and so
ess sup

ξ∈P
|T (f13Q0\3P )(ξ)| ≤ C0|f |3Q0 .

This estimates the second term from the left hand side in (7.17). Regarding
|T (f13Q0)(x)|1Q0\

⋃
P ∈F P , we use (7.13) and the definition of E to get

|T (f13Q0)(x)|1Q0\
⋃

P ∈F P (x) ≤ |T (f13Q0)(x)|1Q0\E(x)
(7.13)
≤ C|f(x)|1Q0\E(x) + MT,Q0f(x)1Q0\E(x) ≤ CC0|f |3Q0 + C0|f |3Q0 .

Thus, we have (7.17), and the proof of (7.15) is complete.
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We are ready to finish the proof of sparse domination for Calderón-Zygmund
operators.

Proof of Theorem 7.12. Suppose that f ∈ L1(Rn) is compactly supported, and
without loss of generality assume that supp f ⊂ R0 for some R0 ∈ D.

We construct a family R ⊂ D which is a partition of Rn and such that for every
R ∈ R we have supp f ⊂ 3R. First, we add R0 to R. Then, we cover 3R0 \ R0 by
3n − 1 cubes of sidelength ℓ(R0), and we add them to R. Next, we cover 9R0 \ 3R0
by 3n − 1 cubes of sidelength ℓ(3R0), and we add them to R. Proceeding this way,
we cover all of Rn, and for every R ∈ R we have supp f ⊂ R0 ⊂ 3R.

Now, we apply Lemma 7.16 to each R ∈ R. We get 1
2 -sparse families S(R)

such that

|Tf(x)| = |T (f13R)(x)| ≤ C
∑

Q∈S(R)
|f |3Q1Q(x) for a.e. x ∈ R.

Taking S ′ := ⋃
R∈R S(R), we have

|Tf(x)| ≤ C
∑

Q∈S′
|f |3Q1Q(x) for a.e. x ∈ Rn.

Since R is a disjoint family, and cubes from S(R) are contained in R, we see that
S ′ is 1

2 -sparse. Finally, we set S := {3Q : Q ∈ S ′}, so that

|Tf(x)| ≤ C
∑
Q∈S

|f |Q1Q(x) = AS |f |(x).

Note that S is 1
3n·2 -sparse: if EQ are the disjoint subsets associated to Q ∈ S ′,

then
|EQ| ≥ 1

2
|Q| = 1

3n · 2
|3Q|.

This finishes the proof.

7.5 Necessity of the Ap condition
In the last few subsections we have shown that if w ∈ Ap with 1 < p < ∞, then
all Calderón-Zygmund operators are of strong type (p, p) with respect to w (see
Remark 7.2). Now we prove the converse.

Proposition 7.17. Let 1 < p < ∞. Suppose that w is a weight, and that one of
the Riesz transforms Rj is of strong type (p, p) with respect to w. Then, w ∈ Ap.

Hence, the Ap weights are truly the correct class of weights for which one can
study singular integral operators. Note that in the proposition above we don’t
need to assume that all Calderón-Zygmund operators are bounded; it suffices to
have one sufficiently non-degenerate operator, such as one of the Riesz transforms.
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Proof. Denote by ej the unit vector in the direction of the j-th coordinate axis.
Fix a ball B = B(xB, r), and denote by B′ a translate of B by 3rej, so that
B′ = B + 3rej.

Let f ∈ L2(Rn) be a non-negative function supported in B. Then, for x ∈ B′

we have
Rjf(x) =

∫
B

xj − yj

|x − y|n+1 f(y) dy.

Observe that if y ∈ B and x ∈ B′ = B + 3rej, then if we write y = xB + ru, x =
xB + 3rej + rv, with |u|, |v| ≤ 1, we have

xj − yj

|x − y|n+1 = 3r + rvj − ruj

|3rej + rv − ru|n+1 = 1
rn

· 3 + vj − uj

|3ej + v − u|
≥ 1

5rn
,

and so
Rjf(x) ≥ 1

5rn

∫
B

f(y)dy ∼ 1
|B|

∫
B

f = fB.

By the strong (p, p) estimate for Rj we have

w(B′) (fB)p ≲
∫

|Rjf |pw ≲
∫

B
fpw. (7.19)

Similarly, if x ∈ B and y ∈ B′ we have xj−yj

|x−y|n+1 ≤ − 1
5rn . Hence, if non-negative

f is supported in B′, then for x ∈ B we have Rjf(x) ≲ −fB′ , and so

w(B)(fB′)p ≲
∫

B′
fpw.

Taking f = 1B′ we get w(B) ≲ w(B′). Plugging this into (7.19) yields

w(B)(fB)p ≲
∫

B
fpw

for any non-negative f ∈ L2(Rn) supported on B. But this inequality implies
the Ap condition (as already seen above (6.6)): if we take f = w1−p′1B (we may
choose such f by approximating it with bounded function), then the inequality
above becomes

w(B)
(

1
|B|

∫
B

w1−p′
)p

≲
∫

B
w1−p′

,

which is the ball variant of the Ap condition (see Exercise 6.9).

Remark 7.18. Proposition 7.17 remains true if we replace the weight w by any
Borel measure µ on Rn. That is, if Rj is of strong type (p, p) on (Rn, µ), then µ is
absolutely continuous with respect to the Lebesgue measure, and its density is in
Ap. See Section V.4.6 in [Ste93] for details.
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8 Adjacent dyadic grids
Many operators commonly used in harmonic analysis have their dyadic counter-
parts. As a concrete example, consider the dyadic Hardy Littlewood maximal op-
erator MD given by

MDf(x) = sup
x∈Q∈D

1
|Q|

∫
Q

|f |,

which is a dyadic counterpart of the operator Mc introduced in Subsection 6.1.
Due to the nice tree structure of the dyadic grid, the dyadic operators are often

much easier to handle. However, at the end of the day one always needs to face
the question: how does the dyadic operator relate to the original one?

Different variants of the Hardy-Littlewood maximal operator that we have seen
before (centered, non-centered, balls, cubes...) were pointwise comparable to each
other, see Exercise 6.2. This is not the case with the dyadic variant. It is immediate
to see that for any f ∈ L1

loc(Rn) we have the one-sided inequality

MDf(x) ≤ Mcf(x),

simply because the supremum in the definition of Mc is taken over a larger family
of cubes. However, the converse inequality

Mcf(x) ≤ CMDf(x) (8.1)

fails for all C > 0! To see this, observe that for any f ̸= 0 we have Mcf(x) > 0 for
all x ∈ Rn, so in particular supp(Mcf) = Rn. On the other hand, for f = 1[0,1]n

we have

supp(MD(1[0,1]n)) = {x ∈ Rn : xj ≥ 0 for all j = 1, . . . , n}

because all the dyadic cubes intersecting [0, 1]n are contained in the set from the
right hand side. This shows that the pointwise estimate (8.1) is false.3.

What is the property of the dyadic lattice that makes it “incomparable” with
the family of all cubes, or all balls? Recall that when proving the comparability
Mf(x) ∼ Mcf(x), it was crucial that for every x ∈ Rn, r > 0 we had a cube Q
such that B(x, r) ⊂ Q and |Q| ∼ rn, so that

1
|B(x, r)|

∫
B(x,r)

|f | ≲ 1
|Q|

∫
Q

|f |.

We can no longer do the same when we restrict attention to dyadic cubes. It may
happen that the smallest dyadic cube Q containing B(x, r) satisfies ℓ(Q) ≫ r, or

3On the other hand, a weaker estimate in terms of the measure of level sets is true, see Lemma
2.12 in [Duo01]
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even worse, that no such dyadic cube exists! This happens with any ball centered
at 0.

To remedy this, we will consider some generalizations of the usual dyadic grid
we worked with so far.

8.1 The one-third trick
The main idea is to replace the usual dyadic grid D by a finite number of grids
{De}e∈E , where each De has the same fundamental properties as D, namely:

(D1) De = ⋃
k∈Z De

k, where each De
k is a partition of Rn,

(D2) each Q ∈ De
k is a cube of sidelength ℓ(Q) = 2−k,

(D3) if Q, P ∈ De satisfy Q ∩ P ̸= ∅, then either Q ⊂ P or P ⊂ Q. In particular,
each Q ∈ De

k is contained in a unique parent cube Q̂ ∈ De
k−1, and contains

exactly 2n subcubes from De
k+1.

The advantage of having multiple lattices is the following: they can be constructed
in such a way that

(D4) for every x ∈ Rn and r > 0 there exists some e ∈ E and Q ∈ De such that
B(x, r) ⊂ Q and ℓ(Q) ≲ r.

Definition 8.1. A collection of dyadic grids satisfying (D1)–(D4) is called a collec-
tion of adjacent dyadic grids.

It has been known for a long time that one can construct a system of 3n adjacent
dyadic grids simply by setting for every e ∈ E := {−1

3 , 0, 1
3}n

De(Rn) = {2−k(m + [0, 1)n + (−1)ke) : k ∈ Z, m ∈ Zn}.

This is the famous “one-third trick”, and it goes back to Garnett and Jones [GJ82]
and independently Christ.

In dimension 1 an equivalent, and perhaps more illuminating, way of defining
De(R) is the following. Define De

0(R) as the translation of D0(R) by e, as above.
This uniquely determines all the generations De

k(R) for k ≥ 0, and we only have to
define the dyadic ancestors of cubes from De

0(R). To do that, it suffices to define
the dyadic ancestors of I0 := [0, 1) + e, and this will uniquely determine all the
generations De

k(R) for k < 0. There are two possible dyadic parents for I0, either
I l

1 := [0, 2) + e (so that I0 is the left child of I l
1) or Ir

1 := [0, 2) − 2e (so that I0 is
the right child of Ir

1). We choose Ir
1 . Now we need to choose the dyadic parent to

Ir
1 , and this time we choose I l

2 (so that Ir
1 is the left child of I l

2). We proceed in
this way indefinitely, always alternating between left and right possible parents.
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Proposition 8.2. The grids {De}e∈E form a collection of adjacent dyadic grids.

Proof. The properties (D1) and (D2) are trivially true for De(Rn), so it remains
to check (D3) and (D4). First, we show that it suffices to check them for n = 1.
Indeed, note that for any Q ∈ De(Rn) we have

Q = I1 × · · · × In

for some dyadic intervals Ii ∈ Dei(R) with |Ii| = ℓ(Q).
To see (D3), let Q, P ∈ De(Rn) be such that Q ∩ P ̸= ∅, and without loss

of generality assume that ℓ(P ) ≥ ℓ(Q). We have Q = I1 × · · · × In and P =
J1 × · · · × Jn, with Ii, Ji ∈ De(R) and |Ii| = ℓ(Q), |Ji| = ℓ(P ). Since P ∩ Q ̸= ∅,
we get Ii ∩ Ji ̸= ∅ for all 1 ≤ i ≤ n. Recalling that ℓ(P ) ≥ ℓ(Q), the property
(D3) for Dei(R) gives Ii ⊂ Ji for all i, and so Q ⊂ P . This gives (D3) for De(Rn)
assuming that it holds for n = 1.

Regarding (D4), if x ∈ Rn and r > 0, then B(x, r) ⊂ ∏n
i=1(xi −r, xi +r). Using

(D4) for n = 1, we find ei ∈ {−1
3 , 0, 1

3} and Ii ∈ Dei(R) such that (xi−r, xi+r) ⊂ Ii

and |Ii| ≲ r. Set e = (e1, . . . , en). We may assume all the intervals Ii have equal
length, and then Q := ∏n

i=1 Ii ∈ De(Rn), B(x, r) ⊂ Q and ℓ(Q) ≲ r. This gives
(D4) assuming that it is true in dimension 1.

Suppose now n = 1. We need to show properties (D3) and (D4) for De(R).
We start with the nestedness property (D3). Observe that it is equivalent to the
following statement: for any k ∈ Z and l ∈ Z with l < k the set of endpoints of
intervals from De

k(R)

V e
k := {2−k(m + (−1)ke) : m ∈ Z}

satisfies V e
l ⊂ V e

k . It suffices to show this for l = k − 1, as the general case follows
by induction.

For e = 0 this is trivial, so assume e ∈ {−1
3 , 1

3}. The crucial observation is that

2e = 3e − e and 3e ∈ {−1, 1}.

Thus,

V e
k−1 = {2−k+1(m + (−1)k−1e) : m ∈ Z} = {2−k(2m + (−1)k−12e) : m ∈ Z}

= {2−k(2m + (−1)k−13e − (−1)k−1e) : m ∈ Z}
= {2−k(2m + (−1)k−13e + (−1)ke) : m ∈ Z}
⊂ {2−k(m + (−1)ke) : m ∈ Z} = V e

k .

This finishes the proof of (D3).
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Now we prove (D4). Fix an interval I. Choose the unique k ∈ Z satisfying

3|I| < 2−k ≤ 6|I|.

We claim that there exists e ∈ {−1
3 , 0, 1

3} and J ∈ De
k(R) such that I ⊂ J . Indeed,

observe that
Vk :=

⋃
e∈E

V e
k

satisfies Vk = 2−k

3 · Z. Let z ∈ Vk be a point such that

0 < dist(z, I) <
2−k

3
.

Then, z is an endpoint of some dyadic interval J of length 2−k containing I (it’s
either z + [0, 2−k) or z − [0, 2−k)). Since z ∈ ⋃

e∈E V e
k , we get that J ∈ De

k(R) for
some e ∈ E . This finishes the proof.

8.2 Conde-Alonso’s grids
For most applications the 3n adjacent dyadic grids from the previous subsection
are perfectly enough. Nevertheless, in some cases it may be useful to have a system
of adjacent grids consisting od fewer lattices (for example, if we care about the
dimensional dependence of our estimates).

Recently, Conde-Alonso [Con13] proved that one only needs (n + 1) carefully
chosen dyadic lattices {Dj}n

j=0 to form a family of adjacent dyadic grids in Rn,
and that this is the optimal number of lattices. The construction goes as follows.

Observe that a dyadic grid is uniquely determined by choosing a unit cube
(which we will call “initial cube”) and then choosing its dyadic ancestors4. Let
D0 := D be the usual dyadic grid on Rn. For any other j ∈ {1, . . . , n} we define
dyadic grids Dj using the following algorithm. Let pn > n be the smallest odd
integer strictly larger than n, and let v := (1, 1, . . . , 1) ∈ Rn.

(i) We choose the initial cube of Dj to be

Q := [0, 1)n + j

pn

v.

This uniquely determines Dj
k for all generations k ≥ 0.

(ii) There are 2n possible dyadic parents of Q. We choose Q1 to be the unique
possible parent of Q satisfying

4We already saw this in the discussion above Proposition 8.2
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(a) Q1 = [0, 2)n + λv
(b) λ ∈ 2

pn
Z.

There are only two possible parents of Q satisfying (a), namely [0, 2)n + j
pn

v
and [0, 2)n + j−pn

pn
v. Only one of them satisfies condition (b), and here we

crucially use that pn is odd. The choice of Q1 determines Dj
−1.

(iii) By induction, the parent of Qk−1 is chosen as the unique possible dyadic
parent satisfying

Qk = [0, 2k) + λv for some λ ∈ 2k

pn

Z.

This choice determines Dj
−k.

Proposition 8.3. The grids {Dj}n
j=0 form a system of adjacent dyadic lattices.

Note that in the proof of Proposition 8.2 it was very easy to show that (D4)
holds, and most work was dedicated into proving that De for e ∈ E are dyadic
lattices. Now we are in the opposite situation, where the properties (D1)–(D3) are
immediate for Dj, but we need to work a bit to prove (D4). We begin by proving
two auxiliary lemmas.

Lemma 8.4. Fix k ∈ Z. Let V j
k denote the vertices of the cubes in Dj

k. For all
j ∈ {0, . . . , n}

V j
k ⊂ Vk := 2−k

pn

Zn.

Proof. The statement is clear for k = 0. For general k, note first that if a single
vertex v of a single cube Q ∈ Dj

k is in Vk, then the same is true for all the other
vertices of all the other cubes in Dj

k, simply because the other vertices are of the
form

2−km + v = 2−kpn

pn

m + v ∈ Vk

for some m ∈ Zn. Now, if k ≥ 1, then V j
0 ⊂ V j

k . Since V j
0 ⊂ V0 ⊂ Vk, we get that

some vertices in V j
k are contained in Vk. Hence, V j

k ⊂ Vk. On the other hand, if
k ≤ −1, then the cube Q−k from the construction of Dj

k has a vertex at λv. Since
λ ∈ 2−k

pn
Z, we have λv ∈ Vk, and so V j

k ⊂ Vk.

Lemma 8.5. Denote by πi : Rn → R the orthogonal projection to the xi-axis. For
any i ∈ {1, . . . , n} we have πi(V j

k ) ∩ πi(V j′

k ) = ∅ whenever j ̸= j′.
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Proof. First, observe that V j
k ∩ V j′

k = ∅. This is simply because a single vertex
determines the entire 2−k-grid, and so V j

k ∩ V j′

k ̸= ∅ implies V j
k = V j′

k , which is
only true if j = j′.

Now note that πi(V j
k ) = πi′(V j

k ) for any i, i′ ∈ {1, . . . , n}. This is because for
every i the set πi(V j

k ) is a 2−k grid on R, and they all contain the point j
pn

(here
we use the fact that v = (1, 1, . . . , 1)).

It follows that if we have πi(V j
k )∩πi(V j′

k ) ̸= ∅ for some i, then πi(V j
k ) = πi(V j′

k )
for all i, and the grid structure of V j

k then implies V j
k = V j′

k .

Proof of Proposition 8.3. To prove (D4), it suffices to show that for any axes-
parallel cube R ⊂ Rn there exists some j ∈ {0, . . . , n} and Q ∈ Dj such that
R ⊂ Q and ℓ(Q) ≲ ℓ(R). Fix the unique k ∈ Z such that

2−k−1

pn

≤ ℓ(R) <
2−k

pn

.

Note that the upper bound implies

#(πi(R) ∩ πi(Vk)) ≤ 1 (8.2)

for all i ∈ {1, . . . , n}, where # denotes cardinality.
We claim that for some j ∈ {0, . . . , n} and Q ∈ Dj

k we have R ⊂ Q. Suppose
this is not the case. Then, for every j there exists ij ∈ {1, . . . , n} such that
πij

(R) ∩ πij
(V j

k ) ̸= ∅. Since there are n + 1 families Dj
k and only n projections

πi, by the pigeonhole principle there exist 0 ≤ j < j′ ≤ n such that ij = ij′ =: i.
Hence,

πi(R) ∩ πi(V j
k ) ̸= ∅ and πi(R) ∩ πi(V j′

k ) ̸= ∅.

By Lemma 8.5 we have πi(V j
k )∩πi(V j′

k ) = ∅, and by Lemma 8.4 πi(V j
k )∪πi(V j′

k ) ⊂
πi(Vk). Hence, #(πi(R) ∩ πi(Vk)) ≥ 2, but this is a contradiction with (8.2).

The following exercise demonstrates that n + 1 is the smallest possible number
of adjacent dyadic grids.
Exercise 8.6. Suppose that A1, . . . , An is a family of n dyadic lattices on Rn.
Show that there exists a point q ∈ Rn such that for any ε > 0 and j ∈ {1, . . . , n}
if B(x, ε) ⊂ Q ∈ Aj, then ℓ(Q) ≥ 1.

Hint: Find cubes Qj ∈ Aj, j ∈ {1, . . . , n} with ℓ(Qj) = 1 and such that⋂n
j=1 ∂Qj ̸= ∅. Then pick q ∈ ⋂n

j=1 ∂Qj.
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8.3 An application
We give one simple application. Recall the dyadic variant of the Hardy-Littlewood
maximal operator MD. As explained below (8.1), the pointwise estimate Mcf(x) ≤
CMDf(x) is false for all C > 0. However, if we replace MDf by a sum of maximal
operators associated to a collection of adjacent dyadic grids, things look better.

Lemma 8.7. Suppose that {De}e∈E is a collection of adjacent dyadic grids. Then,

Mcf(x) ≲
∑
e∈E

MDef(x). (8.3)

Proof. Let Q be a cube containing x. By the definition of adjacent dyadic grids,
there exists e ∈ E such that Q ⊂ P ∈ De and ℓ(P ) ≲ ℓ(Q). Hence,

1
|Q|

∫
Q

|f | ≲ 1
|P |

∫
P

|f | ≤ MDef(x).

Taking supremum over all cubes Q containing x finishes the proof.

The estimate (8.3) can be used to give an alternative proof of the weak (1, 1)
estimate for Mc, avoiding the use of the 5r covering lemma. Indeed, establishing
the weak (1, 1) estimate for dyadic Hardy-Littlewood maximal operator is almost
immediate.

Lemma 8.8. The dyadic Hardy-Littlewood maximal operator MD is weak (1, 1).

Proof. Let f ∈ L1(Rn), and fix λ > 0. Let B ⊂ D be the family of maximal dyadic
cubes satisfying

1
|Q|

∫
Q

|f | > λ,

so that B is the family of cubes from the Calderón-Zygmund decomposition of f
at level λ. Then,

{x ∈ Rn : MDf(x) > λ} ⊂
⋃

Q∈B
Q

and so
|{x ∈ Rn : MDf(x) > λ}| ≤

∑
Q∈B

|Q| ≤
∑
Q∈B

∫
Q |f |
λ

≤ ∥f∥L1

λ
.

Of course, in the lemma above it doesn’t matter whether we take the usual
dyadic grid D or some other grid De. Together with (8.3), we immediately get the
weak (1, 1) estimate for Mc.
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