3

Analytic capacity and dimension of sets with plenty of big projections

Our main result marks progress on an old conjecture of Vitushkin. We show that a compact set in the plane with plenty of big projections (PBP) has positive analytic capacity, along with a quantitative lower bound. A higher dimensional counterpart is …

Structure of sets with nearly maximal Favard length

Let $E \subset B(1) \subset \mathbb{R}^{2}$ be an $\mathcal{H}^{1}$ measurable set with $\mathcal{H}^{1}(E) 0$.

The measures with $L^2$-bounded Riesz transform satisfying a subcritical Wolff-type energy condition

In this work we obtain a geometric characterization of the measures $\mu$ in $\mathbb{R}^{n+1}$ with polynomial upper growth of degree $n$ such that the $n$-dimensional Riesz transform $\mathcal{R}\mu (x) = \int \frac{x-y}{|x-y|^{n+1}}d\mu(y)$ …

Necessary condition for the $L^2$ boundedness of the Riesz transform on Heisenberg groups

Let $\mu$ be a Radon measure on the $n$-th Heisenberg group $\mathbb{H}^n$. In this note we prove that if the $(2n+1)$-dimensional (Heisenberg) Riesz transform on $\mathbb{H}^n$ is $L^2(\mu)$-bounded, and if $\mu(F)=0$ for all Borel sets with …