2

Quantitative Besicovitch projection theorem for irregular sets of directions

The classical Besicovitch projection theorem states that if a planar set E with finite length is purely unrectifiable, then almost all orthogonal projections of E have zero length. We prove a quantitative version of this result: if a planar set E is …

Visible parts and slices of Ahlfors regular sets

We show that for any compact set $E\subset\mathbb{R}^d$ the visible part of $E$ has Hausdorff dimension at most $d-1/6$ for almost every direction. This improves recent estimates of Orponen and Matheus. If $E$ is $s$-Ahlfors regular, where $sd-1$, we …

Structure of sets with nearly maximal Favard length

Let $E \subset B(1) \subset \mathbb{R}^{2}$ be an $\mathcal{H}^{1}$ measurable set with $\mathcal{H}^{1}(E) 0$.

How much can heavy lines cover?

One formulation of Marstrand's slicing theorem is the following. Assume that $t \in (1,2]$, and $B \subset \mathbb{R}^{2}$ is a Borel set with $\mathcal{H}^{t}(B) t - 1$? A positive answer for $t$-regular sets $B \subset \mathbb{R}^{2}$ was …

The measures with $L^2$-bounded Riesz transform and the Painlevé problem

In this work we obtain a geometric characterization of the measures $\mu$ in $\mathbb{R}^{n+1}$ with polynomial upper growth of degree $n$ such that the $n$-dimensional Riesz transform $\mathcal{R}\mu (x) = \int \frac{x-y}{|x-y|^{n+1}}d\mu(y)$ …

An $\alpha$-number characterization of $L^{p}$ spaces on uniformly rectifiable sets

We give a characterization of $L^{p}(\sigma)$ for uniformly rectifiable measures $\sigma$ using Tolsa's $\alpha$-numbers, by showing, for $1

Necessary condition for the $L^2$ boundedness of the Riesz transform on Heisenberg groups

Let $\mu$ be a Radon measure on the $n$-th Heisenberg group $\mathbb{H}^n$. In this note we prove that if the $(2n+1)$-dimensional (Heisenberg) Riesz transform on $\mathbb{H}^n$ is $L^2(\mu)$-bounded, and if $\mu(F)=0$ for all Borel sets with …

Integrability of orthogonal projections, and applications to Furstenberg sets

Let $\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\mathbb{R}^{d}$, and let $\pi_{V} \colon \mathbb{R}^{d} \to V$ be the orthogonal projection. We prove that if $\mu$ is a compactly supported Radon measure on …

Cones, rectifiability, and singular integral operators

Let $\mu$ be a Radon measure on $\mathbb{R}^d$. We define and study conical energies $\mathcal{E}(x,V,\alpha)$, which quantify the portion of $\mu$ lying in the cone with vertex $x\in\mathbb{R}^d$, direction $V\in G(d,d-n)$, and aperture $\alpha\in …

Analytic capacity and dimension of sets with plenty of big projections

Our main result marks progress on an old conjecture of Vitushkin. We show that a compact set in the plane with plenty of big projections (PBP) has positive analytic capacity, along with a quantitative lower bound. A higher dimensional counterpart is …