

Cones, rectifiability, and SIOs

Damian Dąbrowski

Universitat Autònoma de Barcelona, Barcelona Graduate School of Mathematics (BGS-Math)

Thanks to support from MDM-2014-0445.

Cones

Given $x \in \mathbb{R}^d$, $V \in G(d, m)$, $\alpha \in (0, 1)$, set $K(x, V, \alpha) = \{y \in \mathbb{R}^d : \operatorname{dist}(y, x + V) < \alpha | y - x | \},$ $K(x, V, \alpha, r) = K(x, V, \alpha) \cap B(x, r).$

Tangent planes

A plane $W \in G(d, n)$ is a **tangent plane** to *E* at *x* if for all $\alpha \in (0, 1)$ there exists r > 0 such that

 $E \cap K(x, W^{\perp}, \alpha, r) = \emptyset.$

Cones and Lipschitz graphs

Easy to show: $E \subset \mathbb{R}^d$ is a subset of an *n*-dimensional Lipschitz graph iff there exists $V \in G(d, d - n)$, $\alpha \in (0, 1)$, such that

 $x \in E \quad \Rightarrow \quad E \cap K(x, V, \alpha) = \varnothing.$

Rectifiability

A set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exists a countable number of *n*-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^n\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

A measure μ on \mathbb{R}^d is *n*-rectifiable if it is of the form

$$\mu = f\mathcal{H}^n|_{\mathcal{B}}$$

for some *n*-rectifiable $E \subset \mathbb{R}^d$ and $f \in L^1_{loc}(E)$.

Purely unrectifiable sets

We say that $F \subset \mathbb{R}^d$ is **purely** *n***-unrectifiable** if for every Γ -Lipschitz image of \mathbb{R}^n

 $\mathcal{H}^n(F\cap \Gamma)=0.$

F is purely 1-unrectifiable and satisfies $1 \le \mathcal{H}^1(F) \le \sqrt{2}$.

Any set of finite \mathcal{H}^n measure can be decomposed into a rectifiable and purely unrectifiable part.

Applications in:

- boundedness of singular integral operators,
- study of removable sets for bounded analytic functions,
- optimal regularity of domains that ensure *L^p* solvability of the Dirichlet problem,
- study of singular sets of harmonic maps, free boundaries...

Approximate tangent planes

A plane $W \in G(d, n)$ is an approximate tangent plane to E at x if for all $\alpha \in (0, 1)$

Approximate tangents characterize rectifiability

Theorem (Federer '47)

Let $E \subset \mathbb{R}^d$, $\mathcal{H}^n(E) < \infty$. Then *E* is *n*-rectifiable iff for \mathcal{H}^n -a.e. $x \in E$ there is a unique approximate tangent plane to *E* at *x*, i.e. for all α

$$\lim_{r\to 0}\frac{\mathcal{H}^n(E\cap K(x,W^{\perp},\alpha,r))}{r^n}=0.$$

Analogous result holds for μ satisfying $0 < \Theta^{n,*}(\mu, x) < \infty$,

$$\Theta^{n,*}(\mu, x) = \limsup_{r \to 0} \frac{\mu(B(x, r))}{r^n}, \qquad \Theta^n_*(\mu, x) = \liminf_{r \to 0} \frac{\mu(B(x, r))}{r^n}.$$

Fact

 $\mu \text{ is rectifiable } \Rightarrow 0 < \Theta^{n,*}(\mu, x) = \Theta^n_*(\mu, x) < \infty \text{ a.e.}$

Let $V \in G(d, d - n)$, $\alpha \in (0, 1)$, $1 \le p < \infty$. The (V, α, p) conical energy of *E* at $x \in E$ up to scale R > 0 is

$$\mathcal{E}_{E,p}(x, V, \alpha, R) = \int_0^R \left(\frac{\mathcal{H}^n(E \cap K(x, V, \alpha, r))}{r^n} \right)^p \frac{dr}{r}$$

More generally: for a Radon measure μ on \mathbb{R}^d define

$$\mathcal{E}_{\mu,p}(x,V,\alpha,R) = \int_0^R \left(\frac{\mu(K(x,V,\alpha,r))}{r^n}\right)^p \frac{dr}{r}$$

Theorem (D. '20)

Let $1 \le p < \infty$. Suppose μ is *n*-rectifiable. Then, for μ -a.e. *x* there is $V_x \in G(d, d - n)$ such that for all $\alpha \in (0, 1)$

$$\mathcal{E}_{\mu,p}(x,V_x,\alpha,1) = \int_0^1 \left(\frac{\mu(K(x,V_x,\alpha,r))}{r^n}\right)^p \frac{dr}{r} < \infty.$$

Theorem (D. '20)

Let $1 \le p < \infty$. Suppose μ is a Radon measure satisfying $0 < \Theta^{n,*}(\mu, x)$ and $\Theta^n_*(\mu, x) < \infty$. Assume that for μ -a.e. x there is $V_x \in G(d, d - n)$ and $\alpha \in (0, 1)$ such that

$$\mathcal{E}_{\mu,p}(x,V_x,\alpha,1) = \int_0^1 \left(\frac{\mu(\mathcal{K}(x,V_x,\alpha,r))}{r^n}\right)^p \frac{dr}{r} < \infty.$$

Then, μ is *n*-rectifiable.

Question

 $0 < \Theta^{n,*}(\mu, x), \ \Theta^n_*(\mu, x) < \infty,$ approximate tangents exist a.e. $\stackrel{?}{\Longrightarrow}$ μ is rectifiable

$$\mu \text{ is rectifiable } \Rightarrow \mathcal{E}_{\mu,p} < \infty \text{ a.e.}$$

Follows easily from a result of Tolsa:

Theorem (Tolsa '15)

$$\mu$$
 is rectifiable $\Rightarrow \int_0^1 \beta_{\mu,2}(x,r)^2 \frac{dr}{r} < \infty$ a.e.

Not difficult:

$$\mathcal{E}_{\mu,1}(x,V,\alpha,1) = \int_0^1 \frac{\mu(K(x,V,\alpha,r))}{r^n} \frac{dr}{r} \lesssim \int_0^1 \beta_{\mu,2}(x,r)^2 \frac{dr}{r} < \infty,$$

and

$$\mathcal{E}_{\mu,p}(x, \mathsf{V}, \alpha, 1) \leq \Theta^{n,*}(\mu, x)^{p-1} \mathcal{E}_{\mu,1}(x, \mathsf{V}, \alpha, 1).$$

$$\begin{array}{ccc} 0 < \Theta^{n,*}(\mu, x), \ \Theta^{n}_{*}(\mu, x) < \infty, \\ \mathcal{E}_{\mu,p} < \infty \ \text{a.e.} \end{array} \implies & \mu \ \text{is rectifiable} \end{array}$$

- a corona decomposition result,
- prove the theorem assuming additionally $\Theta^{n,*}(\mu, x) < \infty$,
- show that

$$\begin{array}{ccc} 0 < \Theta^{n,*}(\mu, x), \ \Theta^n_*(\mu, x) < \infty, \\ \mathcal{E}_{\mu,p} < \infty \ \text{a.e.} \end{array} \implies \qquad \Theta^{n,*}(\mu, x) < \infty. \end{array}$$

Big pieces of Lipschitz graphs

We say that $E \subset \mathbb{R}^d$ has **big pieces of Lipschitz graphs** (BPLG) if there exists $C, L, \kappa > 0$ such that

• it is AD-regular, i.e. for $x \in E$, 0 < r < diam(E)

$$C^{-1}r^n \leq \mathcal{H}^n(E \cap B(x,r)) \leq Cr^n,$$

• for all balls *B* centered at *E*, 0 < r(B) < diam(E), there exists a Lipschitz graph Γ , Lip(Γ) $\leq L$, such that

 $\mathcal{H}^n(E\cap B\cap \Gamma)\geq \kappa r(B)^n.$

Big pieces of Lipschitz graphs

Theorem (D. '20)

Suppose $E \subset \mathbb{R}^d$ is AD-regular, $1 \le p < \infty$. Then *E* has BPLG iff there exist $\alpha, \kappa, M > 0$, such that the following holds.

For all balls *B* centered at *E*, 0 < r(B) < diam(E), there exists a set $G_B \subset E \cap B$ with $\mathcal{H}^n(G_B) \ge \kappa r(B)^n$, and a direction $V \in G(d, d - n)$, such that for all $x \in G_B$

$$\mathcal{E}_{E,p}(x, V, \alpha, r(B)) = \int_0^{r(B)} \left(\frac{\mathcal{H}^n(E \cap K(x, V, \alpha, r))}{r^n}\right)^p \frac{dr}{r} \leq M.$$

We will call the condition above **big pieces with bounded energy** (BPBE).

E has BPBE \Rightarrow E has BPLG

Can be reduced to

Theorem (Martikainen-Orponen '18)

Suppose $E \subset \mathbb{R}^d$ is AD-regular. Then *E* has BPLG iff there exist $\kappa, M > 0$, such that the following holds.

For all balls *B* centered at *E*, 0 < r(B) < diam(E), there exists a set $G_B \subset E \cap B$ with $\mathcal{H}^n(G_B) \ge \kappa r(B)^n$, and a direction $V_B \in G(d, n)$, such that for a.e. $W \in \mathbf{B}(V_B, \kappa)$ we have $(\pi_W)_*(\mathcal{H}^n|_{G_B}) \in L^2(W)$, and

$$\int_{\mathsf{B}(V_B,\kappa)} \|(\pi_W)_*(\mathcal{H}^n|_{\mathcal{G}_B})\|_{L^2(W)}^2 \, d\gamma_{d,n}(W) \leq Mr(B)^n.$$

Bounded mean energy condition

Definition

We will say that an AD-regular set *E* satisfies the **bounded mean** energy condition if there exist $\alpha > 0, M > 1$, and for a.e. $x \in E$ there exists $V_x \in G(d, d - n)$, such that:

for all balls B centered at E, 0 < r(B) < diam(E),

$$\int_{E\cap B} \mathcal{E}_{E,p}(x, V_x, \alpha, r(B)) d\mathcal{H}^n(x)$$

=
$$\int_{E\cap B} \int_0^{r(B)} \left(\frac{\mathcal{H}^n(E \cap K(x, V_x, \alpha, r))}{r^n} \right)^p \frac{dr}{r} d\mathcal{H}^n(x) \le Mr(B)^n.$$

Easy: BME \Rightarrow BPBE. In particular, BME \Rightarrow BPLG. But the converse is not true!

Question

How to modify BME to get a characterization of BPLG or UR? Replace V_x by $V_{x,r}$? Singular integral operators

Given a Radon measure μ , $f \in L^2(\mu)$, a kernel K(x, y), and $\varepsilon > 0$ set

$$T_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} K(x,y)f(y) \ d\mu(y).$$

We say that T_{μ} is bounded on $L^{2}(\mu)$ if $||T_{\mu,\varepsilon}||_{L^{2}(\mu) \to L^{2}(\mu)}$ are bounded uniformly in ε .

Examples

• Cauchy transform $C_{\mu}f(z) = \int_{\mathbb{C}} \frac{f(w)}{z-w} d\mu(w)$,

• *n*-dimensional Riesz transform

$$\mathcal{R}_{\mu}f(x) = \int_{\mathbb{R}^d} \frac{x-y}{|x-y|^{n+1}} f(y) d\mu(y).$$

SIOs and rectifiability

Question

Given a "nice" kernel *K*, what are the measures μ such that T_{μ} is bounded on $L^{2}(\mu)$?

Denote by $\mathcal{K}^n(\mathbb{R}^d)$ the class of kernels of the form K(x,y) = k(x-y), where $k : \mathbb{R}^d \to \mathbb{R}$ are smooth, odd, and satisfy

$$|\nabla^{j}k(x)| \leq C_{j}|x|^{-n-j}, \quad j = 0, 1, 2, \dots$$

Theorem (David-Semmes '91)Suppose
$$\mu$$
 is n -AD-regular measure on \mathbb{R}^d . Then,for all $K \in \mathcal{K}^n(\mathbb{R}^d)$ T_{μ} is bounded on $L^2(\mu)$ \Leftrightarrow μ is uniformly
rectifiable.

David-Semmes conjecture

Suppose μ is *n*-AD-regular measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu) \Leftrightarrow \mu$ is uniformly rectifiable.

True for n = 1 (Mattila-Melnikov-Verdera 1996) and n = d - 1 (Nazarov-Tolsa-Volberg 2012).

Question

If we only assume that $\mu(B(x, r)) \leq Cr^n$, what are the necessary/sufficient conditions for boundedness of \mathcal{R}_{μ} ?

Theorem (Chang-Tolsa '17)

Let μ be a Radon measure on \mathbb{R}^d satisfying $\mu(B(x, r)) \leq Cr^n$. Suppose that μ satisfies the BPBE conditions with p = 1, i.e. there exist constants $\alpha, \kappa, M > 0$, such that: for all balls *B* there exists a set $G_B \subset B$ with $\mu(G_B) \geq \kappa \mu(B)$, and a direction $V_B \in G(d, d - n)$, such that for all $x \in G_B$

 $\mathcal{E}_{\mu,1}(x, V_B, \alpha, r(B)) \leq M.$

Then, for all $K \in \mathcal{K}^n(\mathbb{R}^d)$ we have T_μ bounded on $L^2(\mu)$.

BPBE with p = 2 and SIOs

Theorem (D. '20)

Let μ be a Radon measure on \mathbb{R}^d satisfying $\mu(B(x, r)) \leq Cr^n$. Suppose that μ satisfies the BPBE conditions with p = 2, i.e. there exist constants $\alpha, \kappa, M > 0$, such that: for all balls *B* there exists a set $G_B \subset B$ with $\mu(G_B) \geq \kappa \mu(B)$, and a direction $V_B \in G(d, d - n)$, such that for all $x \in G_B$

$$\mathcal{E}_{\mu,2}(\mathsf{X},\mathsf{V}_{\mathsf{B}},\alpha,\mathsf{r}(\mathsf{B})) \leq \mathsf{M}.$$

Then, for all $K \in \mathcal{K}^n(\mathbb{R}^d)$ we have T_μ bounded on $L^2(\mu)$.

This is strictly stronger than the result of Chang and Tolsa:

$$\int_0^R \left(\frac{\mu(K(x,V,\alpha,r))}{r^n}\right)^2 \frac{dr}{r} \le \int_0^R \frac{\mu(K(x,V,\alpha,r))}{r^n} \frac{\mu(B(x,r))}{r^n} \frac{dr}{r} \le C \int_0^R \frac{\mu(K(x,V,\alpha,r))}{r^n} \frac{dr}{r}.$$

Corona decomposition

Main lemma

Let μ be a compactly supported Radon measure on \mathbb{R}^d satisfying $\mu(B(x, r)) \leq Cr^n$. Assume further that for some $V \in G(d, d - n)$, $\alpha \in (0, 1)$, we have

$$\mathcal{E}_{\mu,p}(\mathbb{R}^d) = \int \mathcal{E}_{\mu,p}(x, V, \alpha, \infty) \ d\mu(x) < \infty.$$

Then, there exists a decomposition $\mathcal{D}_{\mu} = \bigcup_{R \in \text{Top}} \text{Tree}(R)$, and a corresponding family of Lipschitz graphs $\{\Gamma_R\}_{R \in \text{Top}}$, satisfying:

- (i) Lipschitz constants of Γ_R are uniformly bounded,
- (ii) μ -almost all of $R \setminus \bigcup_{Q \in \text{Stop}(R)} Q$ is contained in Γ_R ,
- (iii) for all $Q \in \text{Tree}(R)$ we have $\Theta_{\mu}(2B_Q) \lesssim \Theta_{\mu}(2B_R)$
- (iv) we have the packing condition

$$\sum_{\mathsf{R}\in\mathsf{Top}}\Theta_{\mu}(2B_{\mathsf{R}})^{p}\mu(\mathsf{R})\lesssim\mu(\mathbb{R}^{d})+\mathcal{E}_{\mu,p}(\mathbb{R}^{d}).$$