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Cones

Given x ∈ Rd, V ∈ G(d,m), α ∈ (0, 1), set

K(x, V, α) = {y ∈ Rd : dist(y, x+ V) < α|y− x|},
K(x, V, α, r) = K(x, V, α) ∩ B(x, r).
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Tangent planes

A plane W ∈ G(d,n) is a tangent plane to E at x if for all
α ∈ (0, 1) there exists r > 0 such that

E ∩ K(x,W⊥, α, r) = ∅.
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Cones and Lipschitz graphs

Easy to show: E ⊂ Rd is a subset of an n-dimensional Lipschitz
graph iff there exists V ∈ G(d,d− n), α ∈ (0, 1), such that

x ∈ E ⇒ E ∩ K(x, V, α) = ∅.
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Rectifiability



Rectifiable sets and measures

A set E ⊂ Rd is n-rectifiable if there exists a countable number
of n-dimensional Lipschitz graphs Γi such that

Hn

(
E \
∪
i
Γi

)
= 0.

A measure µ on Rd is n-rectifiable if it is of the form

µ = fHn|E

for some n-rectifiable E ⊂ Rd and f ∈ L1loc(E).
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Purely unrectifiable sets

We say that F ⊂ Rd is purely n-unrectifiable if for every Γ -
Lipschitz image of Rn

Hn(F ∩ Γ) = 0.

Example

F is purely 1-unrectifiable and satisfies 1 ≤ H1(F) ≤
√
2.

Any set of finite Hn measure can be decomposed into a
rectifiable and purely unrectifiable part.
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Why do we care?

Applications in:

• boundedness of singular integral operators,
• study of removable sets for bounded analytic functions,
• optimal regularity of domains that ensure Lp solvability of
the Dirichlet problem,

• study of singular sets of harmonic maps, free boundaries...
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Approximate tangent planes

A plane W ∈ G(d,n) is an approximate tangent plane to E at x
if for all α ∈ (0, 1)

lim
r→0

Hn(E ∩ K(x,W⊥, α, r))
rn = 0.
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Approximate tangents characterize rectifiability

Theorem (Federer ’47)
Let E ⊂ Rd, Hn(E) < ∞. Then E is n-rectifiable iff for Hn-a.e.
x ∈ E there is a unique approximate tangent plane to E at x,
i.e. for all α

lim
r→0

Hn(E ∩ K(x,W⊥, α, r))
rn = 0.

Analogous result holds for µ satisfying 0 < Θn,∗(µ, x) < ∞,

Θn,∗(µ, x) = lim sup
r→0

µ(B(x, r))
rn , Θn

∗(µ, x) = lim inf
r→0

µ(B(x, r))
rn .

Fact
µ is rectifiable ⇒ 0 < Θn,∗(µ, x) = Θn

∗(µ, x) < ∞ a.e.
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Conical energy

Let V ∈ G(d,d− n), α ∈ (0, 1), 1 ≤ p < ∞. The (V, α,p) conical
energy of E at x ∈ E up to scale R > 0 is

EE,p(x, V, α,R) =
∫ R

0

(
Hn(E ∩ K(x, V, α, r))

rn

)p dr
r .

More generally: for a Radon measure µ on Rd define

Eµ,p(x, V, α,R) =
∫ R

0

(
µ(K(x, V, α, r))

rn

)p dr
r .
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Rectifiability implies finite energy

Theorem (D. ’20)
Let 1 ≤ p < ∞. Suppose µ is n-rectifiable. Then, for µ-a.e. x
there is Vx ∈ G(d,d− n) such that for all α ∈ (0, 1)

Eµ,p(x, Vx, α, 1) =
∫ 1

0

(
µ(K(x, Vx, α, r))

rn

)p dr
r < ∞.
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Finite energy implies rectifiability

Theorem (D. ’20)
Let 1 ≤ p < ∞. Suppose µ is a Radon measure satisfying
0 < Θn,∗(µ, x) and Θn

∗(µ, x) < ∞. Assume that for µ-a.e. x
there is Vx ∈ G(d,d− n) and α ∈ (0, 1) such that

Eµ,p(x, Vx, α, 1) =
∫ 1

0

(
µ(K(x, Vx, α, r))

rn

)p dr
r < ∞.

Then, µ is n-rectifiable.

Question
0 < Θn,∗(µ, x), Θn

∗(µ, x) < ∞, ?
=⇒ µ is rectifiable

approximate tangents exist a.e.
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Remarks on the proofs

µ is rectifiable ⇒ Eµ,p < ∞ a.e.

Follows easily from a result of Tolsa:
Theorem (Tolsa ’15)

µ is rectifiable ⇒
∫ 1
0 βµ,2(x, r)

2 dr
r < ∞ a.e.

Not difficult:

Eµ,1(x, V, α, 1) =
∫ 1

0

µ(K(x, V, α, r))
rn

dr
r .

∫ 1

0
βµ,2(x, r)2

dr
r < ∞,

and
Eµ,p(x, V, α, 1) ≤ Θn,∗(µ, x)p−1 Eµ,1(x, V, α, 1).

�
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Remarks on the proofs

0 < Θn,∗(µ, x), Θn
∗(µ, x) < ∞,

Eµ,p < ∞ a.e.
=⇒ µ is rectifiable

• a corona decomposition result,
• prove the theorem assuming additionally Θn,∗(µ, x) < ∞,
• show that

0 < Θn,∗(µ, x), Θn
∗(µ, x) < ∞,

Eµ,p < ∞ a.e.
=⇒ Θn,∗(µ, x) < ∞.

�
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Big pieces of Lipschitz graphs



Big pieces of Lipschitz graphs

We say that E ⊂ Rd has big pieces of Lipschitz graphs (BPLG) if
there exists C, L, κ > 0 such that

• it is AD-regular, i.e. for x ∈ E, 0 < r < diam(E)

C−1rn ≤ Hn(E ∩ B(x, r)) ≤ Crn,

• for all balls B centered at E, 0 < r(B) < diam(E), there
exists a Lipschitz graph Γ, Lip(Γ) ≤ L, such that

Hn(E ∩ B ∩ Γ) ≥ κr(B)n.
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Big pieces of Lipschitz graphs

E

Γ
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Characterizing BPLG using conical energy

Theorem (D. ’20)
Suppose E ⊂ Rd is AD-regular, 1 ≤ p < ∞. Then E has BPLG iff
there exist α, κ,M > 0, such that the following holds.

For all balls B centered at E, 0 < r(B) < diam(E), there exists a
set GB ⊂ E ∩ B with Hn(GB) ≥ κ r(B)n, and a direction
V ∈ G(d,d− n), such that for all x ∈ GB

EE,p(x, V, α, r(B)) =
∫ r(B)

0

(
Hn(E ∩ K(x, V, α, r))

rn

)p dr
r ≤ M.

We will call the condition above big pieces with bounded
energy (BPBE).
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Proof of “E has BPBE⇒ E has BPLG”

E has BPBE ⇒ E has BPLG

Can be reduced to
Theorem (Martikainen-Orponen ’18)
Suppose E ⊂ Rd is AD-regular. Then E has BPLG iff there exist
κ,M > 0, such that the following holds.

For all balls B centered at E, 0 < r(B) < diam(E), there exists a
set GB ⊂ E ∩ B with Hn(GB) ≥ κ r(B)n, and a direction
VB ∈ G(d,n), such that for a.e. W ∈ B(VB, κ) we have
(πW)∗(Hn|GB) ∈ L

2(W), and∫
B(VB,κ)

∥(πW)∗(Hn|GB)∥
2
L2(W) dγd,n(W) ≤ Mr(B)n.
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Bounded mean energy condition

Definition
We will say that an AD-regular set E satisfies the bounded mean
energy condition if there exist α > 0,M > 1, and for a.e. x ∈ E there
exists Vx ∈ G(d,d− n), such that:

for all balls B centered at E, 0 < r(B) < diam(E),∫
E∩B

EE,p(x, Vx, α, r(B)) dHn(x)

=

∫
E∩B

∫ r(B)

0

(
Hn(E ∩ K(x, Vx, α, r))

rn

)p dr
r dH

n(x) ≤ Mr(B)n.

Easy: BME⇒ BPBE. In particular, BME⇒ BPLG. But the converse is
not true!
Question
How to modify BME to get a characterization of BPLG or UR?
Replace Vx by Vx,r? 18



Singular integral operators



Boundedness of singular integral operators

Given a Radon measure µ, f ∈ L2(µ), a kernel K(x, y), and ε > 0
set

Tµ,εf(x) =
∫
|x−y|>ε

K(x, y)f(y) dµ(y).

We say that Tµ is bounded on L2(µ) if ∥Tµ,ε∥L2(µ)→L2(µ) are
bounded uniformly in ε.

Examples

• Cauchy transform Cµf(z) =
∫
C
f(w)
z−w dµ(w),

• n-dimensional Riesz transform
Rµf(x) =

∫
Rd

x−y
|x−y|n+1 f(y) dµ(y).
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SIOs and rectifiability

Question
Given a “nice” kernel K, what are the measures µ such that Tµ
is bounded on L2(µ)?

Denote by Kn(Rd) the class of kernels of the form
K(x, y) = k(x− y), where k : Rd → R are smooth, odd, and
satisfy

|∇jk(x)| ≤ Cj|x|−n−j, j = 0, 1, 2, . . .

Theorem (David-Semmes ’91)
Suppose µ is n-AD-regular measure on Rd. Then,

for all K ∈ Kn(Rd)
⇔

µ is uniformly
Tµ is bounded on L2(µ) rectifiable.
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David-Semmes conjecture

David-Semmes conjecture
Suppose µ is n-AD-regular measure on Rd. Then,
Rµ is bounded on L2(µ) ⇔ µ is uniformly rectifiable.

True for n = 1 (Mattila-Melnikov-Verdera 1996) and n = d− 1
(Nazarov-Tolsa-Volberg 2012).

Question
If we only assume that µ(B(x, r)) ≤ Crn, what are the
necessary/sufficient conditions for boundedness of Rµ?
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BPBE with p = 1 and SIOs

Theorem (Chang-Tolsa ’17)
Let µ be a Radon measure on Rd satisfying µ(B(x, r)) ≤ Crn.
Suppose that µ satisfies the BPBE conditions with p = 1, i.e.
there exist constants α, κ,M > 0, such that:
for all balls B there exists a set GB ⊂ B with µ(GB) ≥ κµ(B),
and a direction VB ∈ G(d,d− n), such that for all x ∈ GB

Eµ,1(x, VB, α, r(B)) ≤ M.

Then, for all K ∈ Kn(Rd) we have Tµ bounded on L2(µ).
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BPBE with p = 2 and SIOs

Theorem (D. ’20)
Let µ be a Radon measure on Rd satisfying µ(B(x, r)) ≤ Crn.
Suppose that µ satisfies the BPBE conditions with p = 2, i.e.
there exist constants α, κ,M > 0, such that:
for all balls B there exists a set GB ⊂ B with µ(GB) ≥ κµ(B),
and a direction VB ∈ G(d,d− n), such that for all x ∈ GB

Eµ,2(x, VB, α, r(B)) ≤ M.

Then, for all K ∈ Kn(Rd) we have Tµ bounded on L2(µ).
This is strictly stronger than the result of Chang and Tolsa:∫ R

0

(
µ(K(x, V, α, r))

rn

)2 dr
r ≤

∫ R

0

µ(K(x, V, α, r))
rn

µ(B(x, r))
rn

dr
r

≤ C
∫ R

0

µ(K(x, V, α, r))
rn

dr
r . 23



Corona decomposition

Main lemma
Let µ be a compactly supported Radon measure on Rd satisfying
µ(B(x, r)) ≤ Crn. Assume further that for some V ∈ G(d,d− n),
α ∈ (0, 1), we have

Eµ,p(Rd) =

∫
Eµ,p(x, V, α,∞) dµ(x) < ∞.

Then, there exists a decomposition Dµ =
∪
R∈Top Tree(R), and a

corresponding family of Lipschitz graphs {ΓR}R∈Top, satisfying:

(i) Lipschitz constants of ΓR are uniformly bounded,
(ii) µ-almost all of R \

∪
Q∈Stop(R) Q is contained in ΓR,

(iii) for all Q ∈ Tree(R) we have Θµ(2BQ) . Θµ(2BR)
(iv) we have the packing condition∑

R∈Top
Θµ(2BR)pµ(R) . µ(Rd) + Eµ,p(Rd).
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