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p: B —[0,00] is a (Borel) measure if

- (@) =0,
- for all countable families {Ex} of disjoint sets

pl UEe | = nlE).
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Example
- the counting measure,
- the Lebesgue measure on R, on R?,

- the arc-length measure on a smooth curve.
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Hausdorff measure

let0<s<2 ForEc R?Zand 0 < § < oo we define
H3(E) = inf { > diam(A)* : Ec | JA;, diam(4)) < 5}.
i i

and
HS(E) = lim H3(E).
6—0

Fun fact
H' =L, H? = cL



Hausdorff dimension

Fact
For any Borel set £ C R? there exists a unique 0 < sy < 2
such that
H>(E)=0 forsp<s<?2
H>(E) =0 for0<s<
We call such sq the of E, and we denote it

by dim(E).



Hausdorff dimension - examples

So = log5(2)

ﬁ% = 0a)
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Hausdorff measures and Lipschitz maps

We say that f: R? — R? is L-Lipschitz if for any x,y € R?
f(x) = fW)| < Lix = yI.

Lemma
If f: R? = R? is L-Lipschitz, then for any E C R?
H(A(E)) < LHE(E).

Proof: Note that for any covering A; of E, the family f(A;) covers
f(E), and moreover diam(f(A;)) < Ldiam(A;). Hence

Zdiam(f(A,—))S < Z(L diam(A))° = L° Zdiam(A,—)S.
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Given a line L ¢ R? we will denote the orthogonal projection
onto L by 7.

Question

Given E C R? what is the relation between dim(E) and
dim(m.(E))?

Note that 7, is 1-Lipschitz, and so

H?(mL(E)) < H*(E).

In consequence,

dim( (E)) < dim(E).
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If dim(E) < 1, then for almost every line L

dim(m (E)) = dim(E).
If dim(E) > 1, then for almost every line L

(. (E)) > 0.
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Marstrand’s projection theorem

Theorem (Marstrand 1954)
If dim(E) < 1, then for almost every line L

dim(m (E)) = dim(E).
If dim(E) > 1, then for almost every line L

(. (E)) > 0.

Question 2
If dim(E) = 1, and 0 < H'(E) < oo, do we have for almost
every line L

H'(m (E)) > 07
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Four-corner Cantor set

The answer is no! There exists a set K with 1 < #'(K) < /2 that
projects to a zero length set in almost every direction.

Hjmowr (K) = inf{ 32 diam(4))'} < 47(47"V2)! = V2

K:nnKn



Four-corner Cantor set

The answer is no! There exists a set K with 1 < 7/'(K) < v/2 that
projects to a zero length set in almost every direction.

HI(K) > H (m(K)) =1



Four-corner Cantor set

The answer is no! There exists a set K with 1 < 7/'(K) < v/2 that
projects to a zero length set in almost every direction.

HI(K) > H (m(K)) =1



Four-corner Cantor set

The answer is no! There exists a set K with 1 < H'(K) < v/2 that
projects to a zero length set in almost every direction.




Four-corner Cantor set

The answer is no! There exists a set K with 1 < H'(K) < v/2 that
projects to a zero length set in almost every direction.
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Rectifiable sets

A set E C R? is rectifiable if there exists a countable number of
1-dimensional Lipschitz graphs I'; such that

H' (E\UF,) = 0.

We say that F ¢ R? is purely unrectifiable if for every Lipschitz
graph I
H'(FNT) = 0.

Any set of finite #' measure can be decomposed into a
rectifiable and purely unrectifiable part.



Projections and rectifiability

Theorem (Besicovitch 1939)
Let E C R? with 0 < H'(E) < oc. E is purely unrectifiable iff

H' (7 (F)) =0 forae. L.

In particular, if £ is rectifiable with 0 < H'(E) < oo, then for
almost every line
H1(7TL(E)) > 0.
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A few words about the proof

Want to show: E with 0 < H'(E) < oo is purely unrectifiable iff
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Some recent related results

Is it possible to get a more quantitative version of the
Besicovitch projection theorem?

- Since the four-corner Cantor set is purely unrectifiable, we

have
n—o0

H' (w (Kp)) dL 0.

51
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Some recent related results

Is it possible to get a more quantitative version of the
Besicovitch projection theorem?

- Since the four-corner Cantor set is purely unrectifiable, we
have
H(m (Kp)) dL =2
St
Estimates on the decay rate? (Peres-Solomyak 2002,
Nazarov-Peres-Volberg 2011, Tao 2009, Bond-taba-Volberg

2014, Cladek-Davey-Taylor 2020...)
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Some recent related results

Is it possible to get a more quantitative version of the
Besicovitch projection theorem?

- Since the four-corner Cantor set is purely unrectifiable, we
have
H'(m(Kn)) dL =22 0.
St
Estimates on the decay rate? (Peres-Solomyak 2002,
Nazarov-Peres-Volberg 2011, Tao 2009, Bond-taba-Volberg

2014, Cladek-Davey-Taylor 2020...)

- Quantitatively large projections in quantitatively many
directions imply that E is quantitatively rectifiable
(Orponen 2020)
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Thank you!
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