On measures with L² bounded Riesz transform

To AD regularity and beyond

Damian Dąbrowski

University of Jyväskylä

Given $f \in L^2(\mathbb{R}^n)$ set

$$\mathcal{R}f(x) = \int_{\mathbb{R}^n} \frac{x - y}{|x - y|^{n+1}} f(y) \ d\mathcal{L}^n(y).$$

Given $f \in L^2(\mathbb{R}^n)$ and $\varepsilon > 0$ set

$$\mathcal{R}_{\varepsilon}f(x) = \int_{|x-y| > \varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mathcal{L}^n(y).$$

Given $f \in L^2(\mathbb{R}^n)$ and $\varepsilon > 0$ set

$$\mathcal{R}_{\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mathcal{L}^n(y).$$

Fact: the Riesz transform is bounded on $L^2(\mathbb{R}^n)$, in the sense that $\|\mathcal{R}_{\varepsilon}\|_{L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)}$ are bounded uniformly in ε .

Given a Radon measure μ on \mathbb{R}^d , $f \in L^2(\mu)$, and $\varepsilon > 0$ set

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mu(y).$$

We say that \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$ if $\|\mathcal{R}_{\mu,\varepsilon}\|_{L^{2}(\mu)\to L^{2}(\mu)}$ are bounded uniformly in ε .

Given a Radon measure μ on \mathbb{R}^d , $f \in L^2(\mu)$, and $\varepsilon > 0$ set

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mu(y).$$

We say that \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$ if $\|\mathcal{R}_{\mu,\varepsilon}\|_{L^{2}(\mu) \to L^{2}(\mu)}$ are bounded uniformly in ε .

Question

What are the measures μ for which \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$?

This question arises naturally in PDEs when studying

- the *L^p* solvability of the Dirichlet problem using the method of layer potentials,
- the removable sets for bounded analytic functions (in \mathbb{R}^2), or Lipschitz harmonic functions (in \mathbb{R}^n , $n \ge 2$).

• $\mu(B(x,r)) \leq Cr^s$ for some s > n,

- $\mu(B(x,r)) \leq Cr^s$ for some s > n,
- $\cdot \mu = \mathcal{H}^n |_L$ for some *n*-plane *L*,

- $\mu(B(x,r)) \leq Cr^s$ for some s > n,
- $\mu = \mathcal{H}^n |_L$ for some *n*-plane *L*,
- $\mu = \mathcal{H}^n |_{\Sigma}$ for an *n*-dimensional $C^{1,\alpha}$ manifold Σ .

- $\mu(B(x,r)) \leq Cr^s$ for some s > n,
- $\mu = \mathcal{H}^n |_L$ for some *n*-plane *L*,
- $\mu = \mathcal{H}^n |_{\Sigma}$ for an *n*-dimensional $C^{1,\alpha}$ manifold Σ .

Lemma (David '91)

Suppose that \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$, and μ does not contain atoms. Then,

 $\mu(B(x,r)) \leq Cr^n.$

Densities

For a Radon measure μ on \mathbb{R}^d , $x \in \mathbb{R}^d$ and r > 0 set

$$\theta_{\mu}(x,r) = \frac{\mu(B(x,r))}{r^n}.$$

Densities

For a Radon measure μ on \mathbb{R}^d , $x \in \mathbb{R}^d$ and r > 0 set

$$\theta_{\mu}(x,r)=\frac{\mu(B(x,r))}{r^{n}}.$$

David's lemma: if \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$, then $\theta_{\mu}(x, r) \leq C$.

Densities

For a Radon measure μ on \mathbb{R}^d , $x \in \mathbb{R}^d$ and r > 0 set $\theta_\mu(x, r) = \frac{\mu(B(x, r))}{r^{\eta}}.$

David's lemma: if \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$, then $\theta_{\mu}(x, r) \leq C$.

We will say that μ is *n*-AD-regular if for $x \in \text{supp } \mu$, $0 < r < \text{diam}(\text{supp } \mu)$

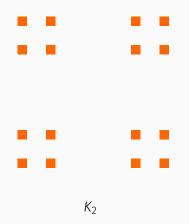
$$C^{-1}r^n \leq \mu(B(x,r)) \leq Cr^n.$$

In other words,

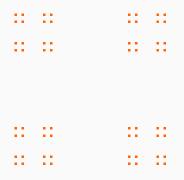
$$\theta_{\mu}(x,r) \approx 1.$$

The four-corner Cantor set $K \subset \mathbb{R}^2$ is an example of a set such that $\mu = \mathcal{H}^1|_K$ is 1-ADR but \mathcal{R}_μ is not bounded on $L^2(\mu)$.

The four-corner Cantor set $K \subset \mathbb{R}^2$ is an example of a set such that $\mu = \mathcal{H}^1|_{\kappa}$ is 1-ADR but \mathcal{R}_{μ} is not bounded on $L^2(\mu)$.

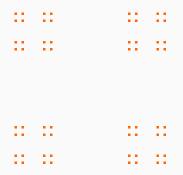


The four-corner Cantor set $K \subset \mathbb{R}^2$ is an example of a set such that $\mu = \mathcal{H}^1|_{\kappa}$ is 1-ADR but \mathcal{R}_{μ} is not bounded on $L^2(\mu)$.



 K_3

The four-corner Cantor set $K \subset \mathbb{R}^2$ is an example of a set such that $\mu = \mathcal{H}^1|_{\kappa}$ is 1-ADR but \mathcal{R}_{μ} is not bounded on $L^2(\mu)$.

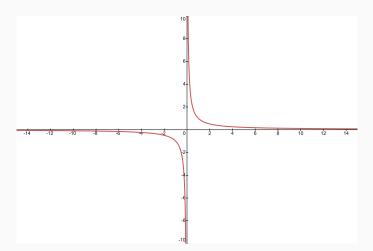


 $K = \bigcap_n K_n$

Flatness is our friend

Recall that

$$\mathcal{R}_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mu(y).$$



6

Let $\mu = \mathcal{H}^n|_{\Gamma}$. Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ provided that

• Γ is a Lipschitz graph with sufficiently small Lipschitz constant (Calderón '77),

Let $\mu = \mathcal{H}^n|_{\Gamma}$. Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ provided that

- Γ is a Lipschitz graph with sufficiently small Lipschitz constant (Calderón '77),
- Γ is a Lipschitz graph with an arbitrary Lipschitz constant (Coifman-McIntosh-Meyer '82),

Let $\mu = \mathcal{H}^n|_{\Gamma}$. Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ provided that

- Γ is a Lipschitz graph with sufficiently small Lipschitz constant (Calderón '77),
- Γ is a Lipschitz graph with an arbitrary Lipschitz constant (Coifman-McIntosh-Meyer '82),
- n = 1 and Γ is a 1-ADR curve (David '84).

Rectifiability

A set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exists a countable number of *n*-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^n\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

Rectifiability

A set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exists a countable number of *n*-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^n\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

We say that $F \subset \mathbb{R}^d$ is **purely** *n***-unrectifiable** if for every Γ -Lipschitz image of \mathbb{R}^n

$$\mathcal{H}^n(F\cap\Gamma)=0.$$

Rectifiability

A set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exists a countable number of *n*-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^n\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

We say that $F \subset \mathbb{R}^d$ is **purely** *n***-unrectifiable** if for every Γ -Lipschitz image of \mathbb{R}^n

$$\mathcal{H}^n(F\cap\Gamma)=0.$$

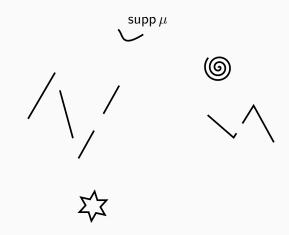
Question

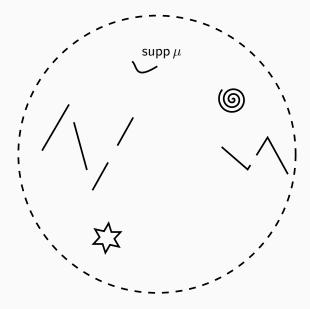
Suppose that *E* is an *n*-ADR, *n*-rectifiable set, and $\mu = \mathcal{H}^n|_E$. Does this imply that \mathcal{R}_{μ} is bounded on $L^2(\mu)$? The answer is no. The notion of rectifiability is qualitative, while the boundedness of \mathcal{R}_{μ} is a quantitative property.

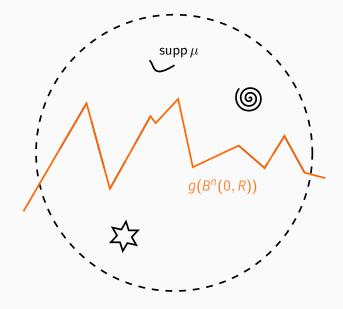
The answer is no. The notion of rectifiability is qualitative, while the boundedness of \mathcal{R}_{μ} is a quantitative property. We say that a measure μ is **uniformly** *n*-rectifiable if

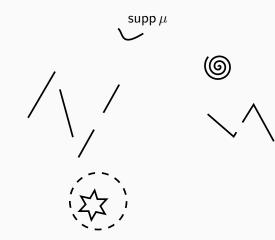
- it is AD-regular
- there exists $L, \kappa > 0$ such that for all balls B = B(x, r)centered at supp μ , $0 < r < \text{diam}(\text{supp }\mu)$, there exists a Lipschitz map $g : \mathbb{R}^n \to \mathbb{R}^d$, Lip $(g) \le L$, such that

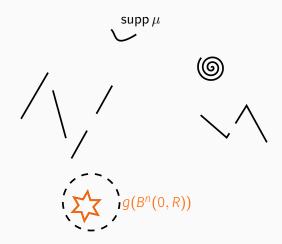
 $\mu(B \cap g(B^n(0,r))) \geq \kappa \mu(B).$











Uniform rectifiability and SIOs

Theorem (David-Semmes '91)

Suppose μ is *n*-AD-regular measure on \mathbb{R}^d . Then,

all "nice" SIOs μ is uniformly are bounded on $L^2(\mu)$ \Leftrightarrow rectifiable.

Uniform rectifiability and SIOs

Theorem (David-Semmes '91)

Suppose μ is *n*-AD-regular measure on \mathbb{R}^d . Then,

all "nice" SIOs μ is uniformly are bounded on $L^2(\mu)$ \Leftrightarrow rectifiable.

David-Semmes conjecture

Suppose μ is *n*-AD-regular measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu) \Leftrightarrow \mu$ is uniformly rectifiable.

Uniform rectifiability and SIOs

Theorem (David-Semmes '91)

Suppose μ is *n*-AD-regular measure on \mathbb{R}^d . Then,

all "nice" SIOs μ is uniformly are bounded on $L^2(\mu)$ \Leftrightarrow rectifiable.

David-Semmes conjecture

Suppose μ is *n*-AD-regular measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu) \Leftrightarrow \mu$ is uniformly rectifiable.

True for n = 1 (Mattila-Melnikov-Verdera 1996) and n = d - 1 (Nazarov-Tolsa-Volberg 2012).

Beyond AD-regular measures

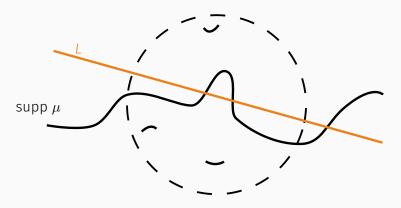
β numbers (Jones '90)

Given $E \subset \mathbb{R}^d$ and a ball $B, E \cap B \neq \emptyset$, the β number of E at B is $\beta_E(B) = \inf_{L} \sup_{x \in E \cap B} \frac{\operatorname{dist}(x, L)}{r(B)}.$ $\beta_E(B) r(B)$

β_2 numbers (David-Semmes '91)

Given a measure μ and a ball B = B(x, r), the β_2 number of μ at B is

$$\beta_{\mu,2}(B) = \beta_{\mu,2}(x,r) = \inf_{L} \left(r(B)^{-n} \int_{B} \left(\frac{\operatorname{dist}(x,L)}{r(B)} \right)^{2} d\mu(x) \right)^{1/2}$$



β_2 numbers and uniform rectifiability

Theorem (David-Semmes '91)

Let μ be an n-ADR measure on \mathbb{R}^d . Then μ is uniformly n-rectifiable iff for all $z \in \operatorname{supp} \mu$, R > 0

$$\int_{B(z,R)}\int_0^R \beta_{\mu,2}(x,r)^2 \frac{dr}{r} d\mu(x) \leq CR^n.$$

β_2 numbers and uniform rectifiability

Theorem (David-Semmes '91)

Let μ be an n-ADR measure on \mathbb{R}^d . Then μ is uniformly n-rectifiable iff for all $z \in \operatorname{supp} \mu$, R > 0

$$\int_{B(z,R)}\int_0^R \beta_{\mu,2}(x,r)^2 \frac{dr}{r} d\mu(x) \leq CR^n.$$

Corollary

Suppose that n = 1 or n = d - 1, and μ is an *n*-ADR measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ iff for all $z \in \operatorname{supp} \mu$, R > 0

$$\int_{B(z,R)}\int_0^R \beta_{\mu,2}(x,r)^2 \frac{dr}{r} d\mu(x) \leq CR^n.$$

β_2 numbers and the Riesz transform

Theorem (Azzam-Tolsa '15)

Suppose that n = 1 and μ is an atomless Radon measure on \mathbb{R}^2 . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ iff $\theta_{\mu}(x, r) \leq C$ and for all balls $B \subset \mathbb{R}^2$

$$\int_{B}\int_{0}^{r(B)}\beta_{\mu,2}(x,r)^{2}\,\theta_{\mu}(x,r)\,\frac{dr}{r}d\mu(x)\leq C\mu(B).$$

β_2 numbers and the Riesz transform

Theorem (Azzam-Tolsa '15)

Suppose that n = 1 and μ is an atomless Radon measure on \mathbb{R}^2 . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu)$ iff $\theta_{\mu}(x, r) \leq C$ and for all balls $B \subset \mathbb{R}^2$

$$\int_{B}\int_{0}^{r(B)}\beta_{\mu,2}(x,r)^{2}\,\theta_{\mu}(x,r)\,\frac{dr}{r}d\mu(x)\leq C\mu(B).$$

Theorem (Girela-Sarrión '19)

Suppose that μ is a Radon measure on \mathbb{R}^d . Assume that $\theta_{\mu}(x, r) \leq C$ and for all balls $B \subset \mathbb{R}^d$

$$\int_{B}\int_{0}^{r(B)}\beta_{\mu,2}(x,r)^{2}\,\theta_{\mu}(x,r)\,\frac{dr}{r}d\mu(x)\leq C\mu(B).$$

Then, all "nice" SIOs are bounded on $L^2(\mu)$.

New results

Theorem (D.-Tolsa, Tolsa)

Suppose that μ is a Radon measure on \mathbb{R}^{n+1} with $\theta_{\mu}(x, r) \leq C$. Assume that \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$. Then, for all balls $B \subset \mathbb{R}^{n+1}$

$$\int_B \int_0^{r(B)} \beta_{\mu,2}(x,r)^2 \,\theta_\mu(x,r) \,\frac{dr}{r} d\mu(x) \leq C\mu(B).$$

New results

Theorem (D.-Tolsa, Tolsa)

Suppose that μ is a Radon measure on \mathbb{R}^{n+1} with $\theta_{\mu}(x, r) \leq C$. Assume that \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$. Then, for all balls $B \subset \mathbb{R}^{n+1}$

$$\int_{B}\int_{0}^{r(B)}\beta_{\mu,2}(x,r)^{2}\,\theta_{\mu}(x,r)\,\frac{dr}{r}d\mu(x)\leq C\mu(B).$$

Corollary

Suppose that μ is an atomless Radon measure on \mathbb{R}^{n+1} . Then, \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$ iff $\theta_{\mu}(x, r) \leq C$ and for all balls $B \subset \mathbb{R}^{n+1}$

$$\int_{B}\int_{0}^{r(B)}\beta_{\mu,2}(x,r)^{2}\,\theta_{\mu}(x,r)\,\frac{dr}{r}d\mu(x)\leq C\mu(B).$$

The proof reduces to showing the following:

Theorem

Suppose that μ is a compactly supported Radon measure on \mathbb{R}^{n+1} with $\theta_{\mu}(x, r) \leq C$. Assume that " $\mathcal{R}\mu \in L^{2}(\mu)$." Then,

$$\iint_0^\infty \beta_{\mu,2}(x,r)^2 \,\theta_\mu(x,r) \,\frac{dr}{r} d\mu(x) \lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^2(\mu)}^2.$$

Two papers?

Theorem (D.-Tolsa)

Suppose that μ is as before. Then,

$$\iint_0^\infty \beta_{\mu,2}(\mathbf{x},r)^2 \,\theta_\mu(\mathbf{x},r) \,\frac{dr}{r} d\mu(\mathbf{x}) \lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^2(\mu)}^2 + \sum_{Q \in \mathsf{HE}} \mathcal{E}(4Q).$$

Theorem (Tolsa)

Suppose that μ is as before. Then,

$$\sum_{Q\in\mathsf{HE}}\mathcal{E}(4Q)\lesssim \|\mu\|+\|\mathcal{R}\mu\|^2_{L^2(\mu)}.$$

The proofs build up on techniques from [Eiderman-Nazarov-Volberg '14], [Nazarov-Tolsa-Volberg '14], [Reguera-Tolsa '16], [Jaye-Nazarov-Reguera-Tolsa '20]...

Some corollaries

Our results, together with [Azzam-Tolsa '15] and [Girela-Sarrión '19] give

Corollary 1

Suppose that μ is atomless, and that $\varphi : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is bilipschitz. Set $\sigma = \varphi_{\#}\mu$. If \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$, then \mathcal{R}_{σ} is bounded on $L^{2}(\sigma)$.

Before this was not known even for invertible affine maps.

Some corollaries

Our results, together with [Azzam-Tolsa '15] and [Girela-Sarrión '19] give

Corollary 1

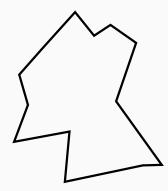
Suppose that μ is atomless, and that $\varphi : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is bilipschitz. Set $\sigma = \varphi_{\#}\mu$. If \mathcal{R}_{μ} is bounded on $L^{2}(\mu)$, then \mathcal{R}_{σ} is bounded on $L^{2}(\sigma)$.

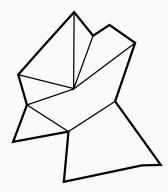
Before this was not known even for invertible affine maps.

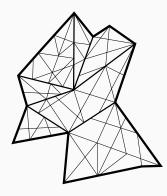
Together with results from [Volberg '03] we get also

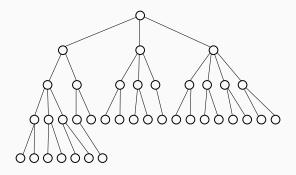
Corollary 2

Suppose that $E \subset \mathbb{R}^{n+1}$, and that $\varphi : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ is bilipschitz. $\varphi(E)$ is removable for Lipschitz harmonic functions iff E is removable for Lipschitz harmonic functions. About the proof









A standard argument gives

$$\iint_0^\infty \beta_{\mu,2}(x,r)^2 \,\theta_\mu(x,r) \,\frac{dr}{r} d\mu(x) \approx \sum_{Q \in \mathcal{D}_\mu} \beta_{\mu,2}(Q)^2 \,\theta_\mu(Q).$$

We are going to divide \mathcal{D}_{μ} into a family of trees, and estimate $\beta_{\mu,2}(Q)^2 \theta_{\mu}(Q)$ on each tree separately.

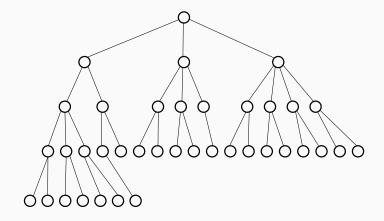
Suppose $0 < \delta \ll 1$ and $\Lambda \gg 1$. Suppose $R \in \mathcal{D}_{\mu}$. We write

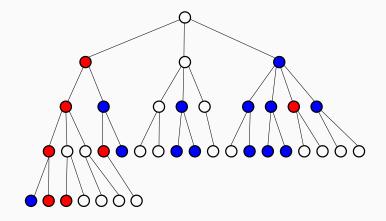
- $Q \in HD(R)$ if $Q \subset R$, $\theta_{\mu}(Q) \ge \Lambda \theta_{\mu}(R)$, and Q is maximal,
- $Q \in LD(R)$ if $Q \subset R$, $\theta_{\mu}(Q) \leq \delta \theta_{\mu}(R)$, and Q is maximal.

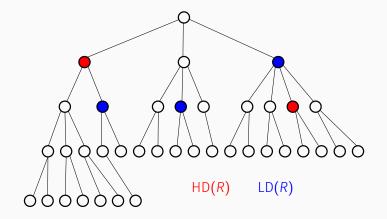
Suppose $0 < \delta \ll 1$ and $\Lambda \gg 1$. Suppose $R \in \mathcal{D}_{\mu}$. We write

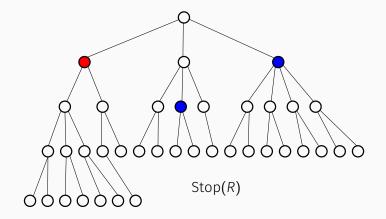
- $Q \in HD(R)$ if $Q \subset R$, $\theta_{\mu}(Q) \ge \Lambda \theta_{\mu}(R)$, and Q is maximal,
- $Q \in LD(R)$ if $Q \subset R$, $\theta_{\mu}(Q) \leq \delta \theta_{\mu}(R)$, and Q is maximal.

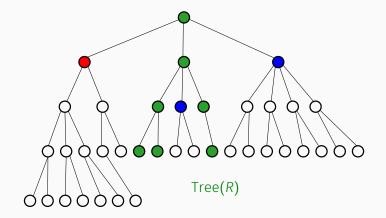
Define Stop(R) to be the family of maximal cubes from $\text{HD}(R) \cup \text{LD}(R)$, and let Tree(R) be the family of cubes which are not contained in any of the Stop(R) cubes.











Note that for $P \in \text{Tree}(R)$ we have $\theta_{\mu}(P) \approx \theta_{\mu}(R)$.

Thus, $\frac{\mu|_R}{\theta_{\mu}(R)}$ "is ADR at the scales and locations of Tree(*R*)". Using the results of Nazarov-Tolsa-Volberg and David-Semmes, we get

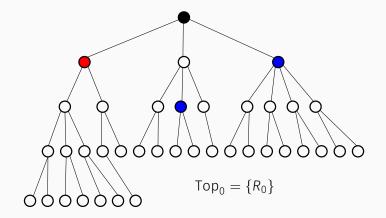
$$\sum_{Q\in\mathsf{Tree}(R)}\beta_{\mu,2}(Q)^2\,\theta_{\mu}(Q)\lesssim\theta_{\mu}(R)^2\mu(R).$$

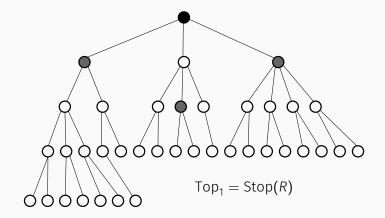
Note that for $P \in \text{Tree}(R)$ we have $\theta_{\mu}(P) \approx \theta_{\mu}(R)$.

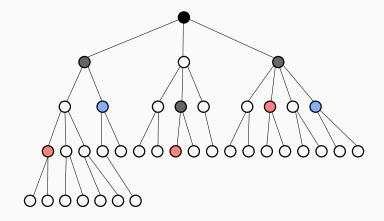
Thus, $\frac{\mu|_R}{\theta_{\mu}(R)}$ "is ADR at the scales and locations of Tree(*R*)". Using the results of Nazarov-Tolsa-Volberg and David-Semmes, we get

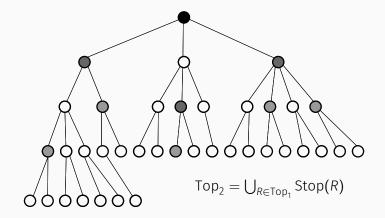
$$\sum_{Q\in \mathsf{Tree}(R)} \beta_{\mu,2}(Q)^2 \, \theta_{\mu}(Q) \lesssim \theta_{\mu}(R)^2 \mu(R).$$

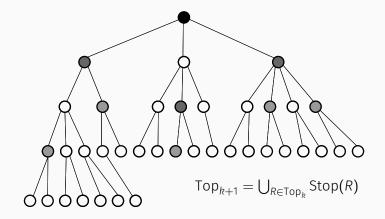
Here we use that d = n + 1.

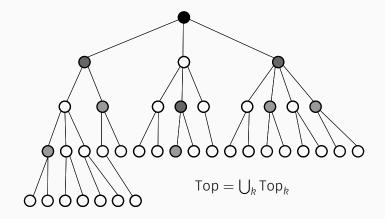


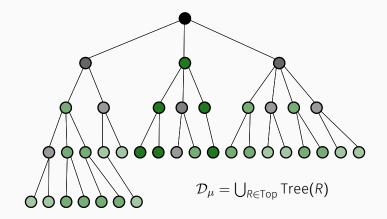












Estimating β numbers on \mathcal{D}_{μ}

Since

$$\mathcal{D}_{\mu} = \bigcup_{R \in \mathsf{Top}} \mathsf{Tree}(R),$$

we have

$$\sum_{Q \in \mathcal{D}_{\mu}} \beta_{\mu,2}(Q)^2 \, \theta_{\mu}(Q) = \sum_{R \in \text{Top}} \sum_{Q \in \text{Tree}(R)} \beta_{\mu,2}(Q)^2 \, \theta_{\mu}(Q)$$

Estimating β numbers on \mathcal{D}_{μ}

Since

$$\mathcal{D}_{\mu} = \bigcup_{R \in \mathsf{Top}} \mathsf{Tree}(R),$$

we have

$$\sum_{Q \in \mathcal{D}_{\mu}} \beta_{\mu,2}(Q)^2 \, \theta_{\mu}(Q) = \sum_{R \in \mathsf{Top}} \sum_{Q \in \mathsf{Tree}(R)} \beta_{\mu,2}(Q)^2 \, \theta_{\mu}(Q)$$
$$\lesssim \sum_{R \in \mathsf{Top}} \theta_{\mu}(R)^2 \mu(R).$$

Estimating β numbers on \mathcal{D}_{μ}

Since

$$\mathcal{D}_{\mu} = \bigcup_{R \in \mathsf{Top}} \mathsf{Tree}(R),$$

we have

$$\sum_{Q \in \mathcal{D}_{\mu}} \beta_{\mu,2}(Q)^2 \, \theta_{\mu}(Q) = \sum_{R \in \mathsf{Top}} \sum_{Q \in \mathsf{Tree}(R)} \beta_{\mu,2}(Q)^2 \, \theta_{\mu}(Q)$$
$$\lesssim \sum_{R \in \mathsf{Top}} \theta_{\mu}(R)^2 \mu(R).$$

The new goal:

$$\sum_{\mathsf{R}\in\mathsf{Top}}\theta_{\mu}(\mathsf{R})^{2}\mu(\mathsf{R})\lesssim \|\mu\|+\|\mathcal{R}\mu\|_{L^{2}(\mu)}^{2}+\sum_{\mathsf{Q}\in\mathsf{HE}}\mathcal{E}(4\mathsf{Q}).$$

Martingale decomposition

If Ch(P) denotes the children of $P \in \mathcal{D}_{\mu}$, then for $f \in L^{2}(\mu)$ we define

$$\Delta_P f = \sum_{Q \in Ch(P)} m_Q f - m_P f.$$

The functions $\{\Delta_P f\}_P$ are pairwise $L^2(\mu)$ orthogonal, and moreover

$$||f - m_{R_0}f||^2_{L^2(\mu)} = \sum_{P \in \mathcal{D}_{\mu}} ||\Delta_P f||^2_{L^2(\mu)}.$$

Martingale decomposition

If Ch(P) denotes the children of $P \in \mathcal{D}_{\mu}$, then for $f \in L^{2}(\mu)$ we define

$$\Delta_P f = \sum_{Q \in Ch(P)} m_Q f - m_P f.$$

The functions $\{\Delta_P f\}_P$ are pairwise $L^2(\mu)$ orthogonal, and moreover

$$||f - m_{R_0}f||^2_{L^2(\mu)} = \sum_{P \in \mathcal{D}_{\mu}} ||\Delta_P f||^2_{L^2(\mu)}.$$

Since $m_{R_0}\mathcal{R}\mu = 0$, we get

$$\|\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} = \sum_{P \in \mathcal{D}_{\mu}} \|\Delta_{P}\mathcal{R}\mu\|_{L^{2}(\mu)}^{2}$$

Martingale decomposition

If Ch(P) denotes the children of $P \in \mathcal{D}_{\mu}$, then for $f \in L^{2}(\mu)$ we define

$$\Delta_P f = \sum_{Q \in Ch(P)} m_Q f - m_P f.$$

The functions $\{\Delta_P f\}_P$ are pairwise $L^2(\mu)$ orthogonal, and moreover

$$||f - m_{R_0}f||^2_{L^2(\mu)} = \sum_{P \in \mathcal{D}_{\mu}} ||\Delta_P f||^2_{L^2(\mu)}.$$

Since $m_{R_0}\mathcal{R}\mu = 0$, we get

$$\begin{split} \|\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} &= \sum_{P \in \mathcal{D}_{\mu}} \|\Delta_{P}\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} \\ &= \sum_{R \in \text{Top}} \sum_{P \in \text{Tree}(R)} \|\Delta_{P}\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} \end{split}$$

Recall that we want to show

$$\sum_{R\in\mathsf{Top}}\theta_{\mu}(R)^{2}\mu(R) \lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} + \sum_{Q\in\mathsf{HE}}\mathcal{E}(4Q)$$

Recall that we want to show

$$\begin{split} \sum_{R\in\mathsf{Top}} \theta_{\mu}(R)^{2}\mu(R) &\lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} + \sum_{Q\in\mathsf{HE}} \mathcal{E}(4Q) \\ &= \|\mu\| + \sum_{R\in\mathsf{Top}} \sum_{P\in\mathsf{Tree}(R)} \|\Delta_{P}\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} + \sum_{Q\in\mathsf{HE}} \mathcal{E}(4Q). \end{split}$$

27

Recall that we want to show

$$\sum_{R\in\mathsf{Top}}\theta_{\mu}(R)^{2}\mu(R) \lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} + \sum_{Q\in\mathsf{HE}}\mathcal{E}(4Q)$$
$$= \|\mu\| + \sum_{R\in\mathsf{Top}}\sum_{P\in\mathsf{Tree}(R)}\|\Delta_{P}\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} + \sum_{Q\in\mathsf{HE}}\mathcal{E}(4Q).$$

We use the variational argument to show that for $R \in \text{Top}$

$$heta_{\mu}(R)^{2}\mu(R)\lesssim \sum_{P\in \operatorname{Tree}(R)} \|\Delta_{P}\mathcal{R}\mu\|_{L^{2}(\mu)}^{2}+ ext{ error terms}.$$

Here we use again d = n + 1.

Recall that we want to show

$$\sum_{R\in\mathsf{Top}} \theta_{\mu}(R)^{2} \mu(R) \lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} + \sum_{Q\in\mathsf{HE}} \mathcal{E}(4Q)$$
$$= \|\mu\| + \sum_{R\in\mathsf{Top}} \sum_{P\in\mathsf{Tree}(R)} \|\Delta_{P}\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} + \sum_{Q\in\mathsf{HE}} \mathcal{E}(4Q).$$

We use the variational argument to show that for $R \in \mathsf{Top}$

$$heta_{\mu}(R)^{2}\mu(R)\lesssim \sum_{P\in \operatorname{Tree}(R)} \|\Delta_{P}\mathcal{R}\mu\|_{L^{2}(\mu)}^{2}+ ext{ error terms}.$$

Here we use again d = n + 1.

I lie here a lot.

Q∈HE

Recall that we want to show

$$\sum_{R \in \mathsf{Top}} \theta_{\mu}(R)^{2} \mu(R) \lesssim \|\mu\| + \|\mathcal{R}\mu\|_{L^{2}(\mu)}^{2} + \sum_{Q \in \mathsf{HE}} \mathcal{E}(4Q)$$
$$= \|\mu\| + \sum_{R \in \mathsf{Top}} \sum_{P \in \mathsf{Tree}(R)} \|\Delta_{P} \mathcal{R}\mu\|_{L^{2}(\mu)}^{2} + \sum_{Q \in \mathsf{HE}} \mathcal{E}(4Q).$$

We use the variational argument to show that for $R \in \text{Top}$

$$heta_{\mu}(R)^{2}\mu(R)\lesssim \sum_{P\in {
m Tree}(R)} \|\Delta_{P}\mathcal{R}\mu\|_{L^{2}(\mu)}^{2}+ ext{ error terms}.$$

Here we use again d = n + 1.

I lie here a lot.

The Wolff-type energy $\mathcal{E}(4Q)$ is defined as

$$\mathcal{E}(4Q) = \sum_{P \subset 4Q} \left(\frac{\ell(P)}{\ell(Q)}\right)^{3/4} \theta_{\mu}(P)^{2} \mu(P).$$

We say that Q has high energy, $Q \in HE$, if

 $\mathcal{E}(4Q) \ge M\theta_{\mu}(Q)^2 \mu(Q).$

Thank you!