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The Riesz transform

Given f ∈ L2(Rn) set

Rf(x) =
∫
Rn

x− y
|x− y|n+1 f(y) dL

n(y).

Fact: the Riesz transform is bounded on L2(Rn), in the sense
that ∥Rε∥L2(Rn)→L2(Rn) are bounded uniformly in ε.

Question
What are the measures µ for which Rµ is bounded on L2(µ)?
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Why do we care?

This question arises naturally in PDEs when studying

• the Lp solvability of the Dirichlet problem using the
method of layer potentials,

• the removable sets for bounded analytic functions (in R2),
or Lipschitz harmonic functions (in Rn,n ≥ 2).
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Some easy examples

Examples of measures µ on Rd for which Rµ is bounded on
L2(µ):

• µ(B(x, r)) ≤ Crs for some s > n,

• µ = Hn∣∣
L for some n-plane L,

• µ = Hn∣∣
Σ
for an n-dimensional C1,α manifold Σ.

Lemma (David ’91)
Suppose that Rµ is bounded on L2(µ), and µ does not
contain atoms. Then,

µ(B(x, r)) ≤ Crn.
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Densities

For a Radon measure µ on Rd, x ∈ Rd and r > 0 set

θµ(x, r) =
µ(B(x, r))

rn .

David’s lemma: if Rµ is bounded on L2(µ), then θµ(x, r) ≤ C.

We will say that µ is n-AD-regular if for x ∈ suppµ,

0 < r < diam(suppµ)

C−1rn ≤ µ(B(x, r)) ≤ Crn.

In other words,
θµ(x, r) ≈ 1.
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A negative example

The four-corner Cantor set K ⊂ R2 is an example of a set such
that µ = H1∣∣

K is 1-ADR but Rµ is not bounded on L2(µ).

K1
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A negative example

The four-corner Cantor set K ⊂ R2 is an example of a set such
that µ = H1∣∣

K is 1-ADR but Rµ is not bounded on L2(µ).

K =
⋂
n Kn
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Flatness is our friend

Recall that

Rµ,εf(x) =
∫
|x−y|>ε

x− y
|x− y|n+1 f(y) dµ(y).
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What about Lipschitz graphs?

Let µ = Hn∣∣
Γ
. Then, Rµ is bounded on L2(µ) provided that

• Γ is a Lipschitz graph with sufficiently small Lipschitz
constant (Calderón ’77),

• Γ is a Lipschitz graph with an arbitrary Lipschitz constant
(Coifman-McIntosh-Meyer ’82),

• n = 1 and Γ is a 1-ADR curve (David ’84).
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Rectifiability

A set E ⊂ Rd is n-rectifiable if there exists a countable number
of n-dimensional Lipschitz graphs Γi such that

Hn

E \⋃
i
Γi

 = 0.

We say that F ⊂ Rd is purely n-unrectifiable if for every Γ -
Lipschitz image of Rn

Hn(F ∩ Γ) = 0.

Question
Suppose that E is an n-ADR, n-rectifiable set, and µ = Hn∣∣

E.
Does this imply that Rµ is bounded on L2(µ)?
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Uniform rectifiability (David-Semmes ’91)

The answer is no. The notion of rectifiability is qualitative,
while the boundedness of Rµ is a quantitative property.

We say that a measure µ is uniformly n-rectifiable if

• it is AD-regular
• there exists L, κ > 0 such that for all balls B = B(x, r)
centered at suppµ, 0 < r < diam(suppµ), there exists a
Lipschitz map g : Rn → Rd, Lip(g) ≤ L, such that

µ(B ∩ g(Bn(0, r))) ≥ κµ(B).
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Uniform rectifiability (David-Semmes ’91)

suppµ

10



Uniform rectifiability (David-Semmes ’91)

suppµ

10



Uniform rectifiability (David-Semmes ’91)

suppµ

g(Bn(0,R))

10



Uniform rectifiability (David-Semmes ’91)

suppµ

10



Uniform rectifiability (David-Semmes ’91)

suppµ

g(Bn(0,R))

10



Uniform rectifiability and SIOs

Theorem (David-Semmes ’91)
Suppose µ is n-AD-regular measure on Rd. Then,

all “nice” SIOs
⇔

µ is uniformly
are bounded on L2(µ) rectifiable.

David-Semmes conjecture
Suppose µ is n-AD-regular measure on Rd. Then,
Rµ is bounded on L2(µ) ⇔ µ is uniformly rectifiable.

True for n = 1 (Mattila-Melnikov-Verdera 1996) and n = d− 1
(Nazarov-Tolsa-Volberg 2012).
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Beyond AD-regular measures



β numbers (Jones ’90)

Given E ⊂ Rd and a ball B, E ∩ B ̸= ∅, the β number of E at B is

βE(B) = inf
L

sup
x∈E∩B

dist(x, L)
r(B) .

E
βE(B) r(B)

L
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β2 numbers (David-Semmes ’91)

Given a measure µ and a ball B = B(x, r), the β2 number of µ at
B is

βµ,2(B) = βµ,2(x, r) = inf
L

(
r(B)−n

∫
B

(
dist(x, L)
r(B)

)2
dµ(x)

)1/2

.

supp µ

L
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β2 numbers and uniform rectifiability

Theorem (David-Semmes ’91)
Let µ be an n-ADR measure on Rd. Then µ is uniformly
n-rectifiable iff for all z ∈ suppµ, R > 0∫

B(z,R)

∫ R

0
βµ,2(x, r)2

dr
r dµ(x) ≤ CRn.

Corollary
Suppose that n = 1 or n = d− 1, and µ is an n-ADR measure
on Rd. Then, Rµ is bounded on L2(µ) iff for all z ∈ suppµ,
R > 0 ∫

B(z,R)

∫ R

0
βµ,2(x, r)2

dr
r dµ(x) ≤ CRn.
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β2 numbers and the Riesz transform

Theorem (Azzam-Tolsa ’15)
Suppose that n = 1 and µ is an atomless Radon measure on
R2. Then, Rµ is bounded on L2(µ) iff θµ(x, r) ≤ C and for all
balls B ⊂ R2∫

B

∫ r(B)

0
βµ,2(x, r)2 θµ(x, r)

dr
r dµ(x) ≤ Cµ(B).

Theorem (Girela-Sarrión ’19)
Suppose that µ is a Radon measure on Rd. Assume that
θµ(x, r) ≤ C and for all balls B ⊂ Rd∫

B

∫ r(B)

0
βµ,2(x, r)2 θµ(x, r)

dr
r dµ(x) ≤ Cµ(B).

Then, all “nice” SIOs are bounded on L2(µ).
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New results

Theorem (D.-Tolsa, Tolsa)
Suppose that µ is a Radon measure on Rn+1 with θµ(x, r) ≤ C.
Assume that Rµ is bounded on L2(µ). Then, for all balls
B ⊂ Rn+1 ∫

B

∫ r(B)

0
βµ,2(x, r)2 θµ(x, r)

dr
r dµ(x) ≤ Cµ(B).

Corollary
Suppose that µ is an atomless Radon measure on Rn+1.
Then, Rµ is bounded on L2(µ) iff θµ(x, r) ≤ C and for all balls
B ⊂ Rn+1 ∫

B

∫ r(B)

0
βµ,2(x, r)2 θµ(x, r)

dr
r dµ(x) ≤ Cµ(B).
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Reduction to compactly supported measures

The proof reduces to showing the following:

Theorem
Suppose that µ is a compactly supported Radon measure on
Rn+1 with θµ(x, r) ≤ C. Assume that “Rµ ∈ L2(µ).” Then,∫∫ ∞

0
βµ,2(x, r)2 θµ(x, r)

dr
r dµ(x) . ∥µ∥+ ∥Rµ∥2L2(µ).
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Two papers?

Theorem (D.-Tolsa)
Suppose that µ is as before. Then,∫∫ ∞

0
βµ,2(x, r)2 θµ(x, r)

dr
r dµ(x) . ∥µ∥+ ∥Rµ∥2L2(µ) +

∑
Q∈HE

E(4Q).

Theorem (Tolsa)
Suppose that µ is as before. Then,∑

Q∈HE
E(4Q) . ∥µ∥+ ∥Rµ∥2L2(µ).

The proofs build up on techniques from
[Eiderman-Nazarov-Volberg ’14], [Nazarov-Tolsa-Volberg ’14],
[Reguera-Tolsa ’16], [Jaye-Nazarov-Reguera-Tolsa ’20]... 18



Some corollaries

Our results, together with [Azzam-Tolsa ’15] and [Girela-Sarrión
’19] give
Corollary 1
Suppose that µ is atomless, and that φ : Rn+1 → Rn+1 is
bilipschitz. Set σ = φ#µ. If Rµ is bounded on L2(µ), then Rσ

is bounded on L2(σ).

Before this was not known even for invertible affine maps.

Together with results from [Volberg ’03] we get also
Corollary 2
Suppose that E ⊂ Rn+1, and that φ : Rn+1 → Rn+1 is
bilipschitz. φ(E) is removable for Lipschitz harmonic
functions iff E is removable for Lipschitz harmonic functions.
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About the proof



“Dyadic” lattice of David-Mattila

For µ as before, there exists a family Dµ =
⋃
kDµ,k of subsets

of R0 := suppµ that has many properties of the usual dyadic
lattice.

20



“Dyadic” lattice of David-Mattila

For µ as before, there exists a family Dµ =
⋃
kDµ,k of subsets

of R0 := suppµ that has many properties of the usual dyadic
lattice.

20



“Dyadic” lattice of David-Mattila

For µ as before, there exists a family Dµ =
⋃
kDµ,k of subsets

of R0 := suppµ that has many properties of the usual dyadic
lattice.

20



“Dyadic” lattice of David-Mattila

For µ as before, there exists a family Dµ =
⋃
kDµ,k of subsets

of R0 := suppµ that has many properties of the usual dyadic
lattice.

20



“Dyadic” lattice of David-Mattila

For µ as before, there exists a family Dµ =
⋃
kDµ,k of subsets

of R0 := suppµ that has many properties of the usual dyadic
lattice.

A standard argument gives∫∫ ∞

0
βµ,2(x, r)2 θµ(x, r)

dr
r dµ(x) ≈

∑
Q∈Dµ

βµ,2(Q)2 θµ(Q).

We are going to divide Dµ into a family of trees, and estimate
βµ,2(Q)2 θµ(Q) on each tree separately.
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Stopping time argument

Suppose 0 < δ ≪ 1 and Λ ≫ 1. Suppose R ∈ Dµ. We write

• Q ∈ HD(R) if Q ⊂ R, θµ(Q) ≥ Λθµ(R), and Q is maximal,
• Q ∈ LD(R) if Q ⊂ R, θµ(Q) ≤ δθµ(R), and Q is maximal.

Define Stop(R) to be the family of maximal cubes from
HD(R)∪ LD(R), and let Tree(R) be the family of cubes which are
not contained in any of the Stop(R) cubes.
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Stopping time argument

Stop(R)
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Stopping time argument

Tree(R)
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Estimating β numbers on Tree(R)

Note that for P ∈ Tree(R) we have θµ(P) ≈ θµ(R).

Thus, µ|R
θµ(R) “is ADR at the scales and locations of Tree(R)”.

Using the results of Nazarov-Tolsa-Volberg and David-Semmes,
we get ∑

Q∈Tree(R)
βµ,2(Q)2 θµ(Q) . θµ(R)2µ(R).

Here we use that d = n+ 1.
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Corona decomposition

Top0 = {R0}
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Corona decomposition

Top2 =
⋃
R∈Top1
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Corona decomposition
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Corona decomposition

Top =
⋃
k Topk
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Martingale decomposition

If Ch(P) denotes the children of P ∈ Dµ, then for f ∈ L2(µ) we
define

∆Pf =
∑

Q∈Ch(P)
mQf−mPf.

The functions {∆Pf}P are pairwise L2(µ) orthogonal, and
moreover

∥f−mR0f∥2L2(µ) =
∑
P∈Dµ

∥∆Pf∥2L2(µ).

Since mR0Rµ = 0, we get

∥Rµ∥2L2(µ) =
∑
P∈Dµ

∥∆PRµ∥2L2(µ)

=
∑
R∈Top

∑
P∈Tree(R)

∥∆PRµ∥2L2(µ).
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Martingale decomposition

If Ch(P) denotes the children of P ∈ Dµ, then for f ∈ L2(µ) we
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The variational argument

Recall that we want to show∑
R∈Top

θµ(R)2µ(R) . ∥µ∥+ ∥Rµ∥2L2(µ) +
∑
Q∈HE

E(4Q)

= ∥µ∥+
∑
R∈Top

∑
P∈Tree(R)

∥∆PRµ∥2L2(µ) +
∑
Q∈HE

E(4Q).

We use the variational argument to show that for R ∈ Top

θµ(R)2µ(R) .
∑

P∈Tree(R)
∥∆PRµ∥2L2(µ) + error terms.

Here we use again d = n+ 1.

I lie here a lot.

�
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The Wolff-type energy

The Wolff-type energy E(4Q) is defined as

E(4Q) =
∑
P⊂4Q

(
ℓ(P)
ℓ(Q)

)3/4
θµ(P)2µ(P).

We say that Q has high energy, Q ∈ HE, if

E(4Q) ≥ Mθµ(Q)2µ(Q).
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Thank you!
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