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The Riesz transform

Given f € L?(R") set

RF(X) = /R XY ) den(y).
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The Riesz transform

Given f € [?(R") and ¢ > 0 set

RA) = [ ELaf) dn).

X—y|>e |X - y|n+1

Fact: the Riesz transform is bounded on L?(R"), in the sense
that || Rell2rny— 2y are bounded uniformly in e.
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The Riesz transform

Given a Radon measure ;. on RY, f e L?(11), and e > 0 set

R = [ ) A,

[x=y|>e ‘X -

We say that Ry, is bounded on L?(p) if [| Ry clliz
bounded uniformly in e.

=12 Ar€

Question
What are the measures y for which R, is bounded on L?(u)?



Why do we care?

This question arises naturally in PDEs when studying
- the LP solvability of the Dirichlet problem using the
method of layer potentials,

- the removable sets for bounded analytic functions (in R?),
or Lipschitz harmonic functions (in R, n > 2).
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Some easy examples

Examples of measures p on RY for which R,, is bounded on

L?(p):
- u(B(x,r)) < Cr° for some s > n,
« = H"|, for some n-plane L,

« = H"|s for an n-dimensional C"* manifold ¥.

Lemma (David '91)
Suppose that R, is bounded on L?(x), and u does not
contain atoms. Then,

w(B(x,r)) < Cr.



For a Radon measure g on RY x € RY and r > 0 set

) = M)



For a Radon measure g on RY x € RY and r > 0 set

) = M)

David’s lemma: if R, is bounded on L2(x), then 6,,(x,r) < C.



For a Radon measure g on RY x € RY and r > 0 set

0u(x,1) = M(Bﬁj’ r)).

David’s lemma: if R, is bounded on L2(x), then 6,,(x,r) < C.
We will say that u is n-AD-regular if for x € supp p,
0 < r < diam(supp p)

C'r" < u(B(x,r)) < Cr.

In other words,
Ou(x,r) = 1.



A negative example

The four-corner Cantor set K ¢ R? is an example of a set such

that = H'|, is 1-ADR but R, is not bounded on L?(u).
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A negative example

The four-corner Cantor set K ¢ R? is an example of a set such

that = H'|, is 1-ADR but R, is not bounded on L?(u).
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Flatness is our friend

Recall that
Rpucf(6) = / ) duy).

|x—y|>e |X -y




What about Lipschitz graphs?
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What about Lipschitz graphs?

Let p = H"|_. Then, R, is bounded on L?(u) provided that

e
- ['is a Lipschitz graph with sufficiently small Lipschitz
constant (Calderon '77),

- ['is a Lipschitz graph with an arbitrary Lipschitz constant
(Coifman-McIntosh-Meyer '82),

- n=1and T is a1-ADR curve (David '84).
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Rectifiability

A set E c RY is n-rectifiable if there exists a countable number
of n-dimensional Lipschitz graphs I'; such that

H" (E\UI’,) = 0.

We say that F ¢ R? is purely n-unrectifiable if for every I -
Lipschitz image of R"

H"(FNT) = 0.

Question

Suppose that E is an n-ADR, n-rectifiable set, and u = H"
Does this imply that R, is bounded on L?(u)?

e



Uniform rectifiability (David-Semmes '91)

The answer is no. The notion of rectifiability is qualitative,
while the boundedness of R, is a quantitative property.



Uniform rectifiability (David-Semmes '91)

The answer is no. The notion of rectifiability is qualitative,
while the boundedness of R, is a quantitative property.

We say that a measure p is uniformly n-rectifiable if

- it is AD-regular

- there exists L,k > 0 such that for all balls B = B(x, r)
centered at supp u, 0 < r < diam(supp p), there exists a
Lipschitz map g : R" — RY, Lip(g) < L, such that

1(BNg(B"(0,r))) > ku(B).
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Uniform rectifiability and SIOs

Theorem (David-Semmes '91)
Suppose p is n-AD-regular measure on RY. Then,

all “nice” SI10s w is uniformly
are bounded on L?(u) rectifiable.
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Uniform rectifiability and SIOs

Theorem (David-Semmes '91)
Suppose p is n-AD-regular measure on RY. Then,

all “nice” SI10s w is uniformly
are bounded on L?(u) rectifiable.

David-Semmes conjecture

Suppose p is n-AD-regular measure on RY. Then,
R, is bounded on L?(n) < pis uniformly rectifiable.

True for n = 1 (Mattila-Melnikov-Verdera 1996) and n = d — 1
(Nazarov-Tolsa-Volberg 2012).

n



Beyond AD-regular measures




B numbers (Jones '90)

Given E c R and a ball B, EN B # @, the 5 number of £ at B is

. dist(x, L)
Be(B) = inf sup ———=
e(B) =inf sup ~B)

12



B3, numbers (David-Semmes '91)

Given a measure u and a ball B = B(x, r), the 5, number of y at
Bis

. 2 1/2
Bu2(B) = Bua(x, 1) = in (r(B)”/B <d|srt((gSL)> d,u(x))

13



B, numbers and uniform rectifiability

Theorem (David-Semmes '91)

Let u be an n-ADR measure on RY. Then p is uniformly
n-rectifiable iff for all z € suppp, R > 0

R dr
/ / Bu2(X, r)? =du(x) < CR".
B(z,R) J0 r



B, numbers and uniform rectifiability

Theorem (David-Semmes '91)

Let u be an n-ADR measure on RY. Then p is uniformly
n-rectifiable iff for all z € suppp, R > 0

R dr
/ / Bu2(X, r)? =du(x) < CR".
B(z,R) J0 r

Corollary

Suppose thatn=1orn=d — 1, and u is an n-ADR measure
on RY. Then, R, is bounded on L%(u) iff for all z € supp p,
R>0

R dr
/ / Bua(X, 1) =du(x) < CR".
B(z,R) J0O r



B, numbers and the Riesz transform

Theorem (Azzam-Tolsa "15)

Suppose that n = 1and u is an atomless Radon measure on

R2. Then, R, is bounded on L2(yu) iff 6,,(x,r) < C and for all
balls B C R?

r(B)
L[ Bate a6 S ) < cuce).
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B, numbers and the Riesz transform

Theorem (Azzam-Tolsa "15)

Suppose that n = 1and u is an atomless Radon measure on
R2. Then, R, is bounded on L2(yu) iff 6,,(x,r) < C and for all
balls B ¢ R?

r(B)
L[ Bate a6 S ) < cuce).

Theorem (Girela-Sarrion '19)

Suppose that x is a Radon measure on RY. Assume that
0,.(x,r) < C and for all balls B ¢ R

r(B)
L[ Buatxr? o) Fauto < cuce).

Then, all “nice” SIOs are bounded on L?(u). 15



Theorem (D.-Tolsa, Tolsa)

Suppose that u is a Radon measure on R"*" with 6,,(x,r) < C.
Assume that R, is bounded on L%(x). Then, for all balls
BcC RN—H

//’(B) Buua(x, 1) 0u(x; 1) drdu(x) < Cu(B).
BJO

r



Theorem (D.-Tolsa, Tolsa)

Suppose that u is a Radon measure on R"*" with 6,,(x,r) < C.
Assume that R, is bounded on L%(x). Then, for all balls
BcC RH-H

/B/O’(B) Bua(x, 2 6,(, 1) #du(x) < Cu(B).

Corollary

Suppose that x is an atomless Radon measure on R+,
Then, R,, is bounded on L?(y) iff 6,,(x,r) < C and for all balls
BcC RH-H

1 2 dr
/B/o Bu2(X, ) 0u(x, r)Td,U(X) < Cu(B).



Reduction to compactly supported measures

The proof reduces to showing the following:

Theorem

Suppose that p is a compactly supported Radon measure on
R with 6,,(x,r) < C. Assume that “Ru € L?(u).” Then,

o0 dr
S Bualocr?0,061) 0 S il + 1Rty



Theorem (D.-Tolsa)
Suppose that u is as before. Then,

> dr
JI Bt r? 0,60 ) < il + IRl + 3 £,

QeHE

Theorem (Tolsa)
Suppose that u is as before. Then,

> EGQ) S lpll + 1Rl
QeHE

The proofs build up on techniques from
[Eiderman-Nazarov-Volberg "14], [Nazarov-Tolsa-Volberg "14],
[Reguera-Tolsa "16], [Jaye-Nazarov-Reguera-Tolsa '20]... 18



Some corollaries

Our results, together with [Azzam-Tolsa '15] and [Girela-Sarrion
"19] give

Corollary 1

Suppose that x is atomless, and that ¢ : R — R s
bilipschitz. Set o = @4 pu. If R, is bounded on L2(u), then R,
is bounded on L?(o).

Before this was not known even for invertible affine maps.
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Some corollaries

Our results, together with [Azzam-Tolsa '15] and [Girela-Sarrion
"19] give

Corollary 1

Suppose that x is atomless, and that ¢ : R — R s

bilipschitz. Set o = @4 pu. If R, is bounded on L2(u), then R,
is bounded on L?(o).

Before this was not known even for invertible affine maps.

Together with results from [Volberg '03] we get also
Corollary 2
Suppose that £ C R"*', and that ¢ : R"™" — R is

bilipschitz. ¢(E) is removable for Lipschitz harmonic
functions iff E is removable for Lipschitz harmonic functions.



About the proof




“Dyadic” lattice of David-Mattila

For n as before, there exists a family D, = |J, D,,  of subsets
of Ry := supp i that has many properties of the usual dyadic
lattice.
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“Dyadic” lattice of David-Mattila

For n as before, there exists a family D, = |J, D,,  of subsets
of Ry := supp i that has many properties of the usual dyadic
lattice.

A standard argument gives

I Buats 7 0utn Lt = 3 512007 04(0)

0 QeD,

We are going to divide D, into a family of trees, and estimate
B,.2(Q)?0,,(Q) on each tree separately.

20



Stopping time argument

Suppose 0 < 6 < Tand A > 1. Suppose R € D,,. We write

- Qe HD(R) if Q C R, 0,(Q) > Ad,(R), and Q is maximal,
- Qe LD(R) IfQCR,6,.Q)<d0,(R), and Q is maximal.
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Stopping time argument

Suppose 0 < 6 < Tand A > 1. Suppose R € D,,. We write

- Qe HD(R) if Q C R, 0,(Q) > Ad,(R), and Q is maximal,
- Qe LD(R) IfQCR,6,.Q)<d0,(R), and Q is maximal.

Define Stop(R) to be the family of maximal cubes from
HD(R) U LD(R), and let Tree(R) be the family of cubes which are
not contained in any of the Stop(R) cubes.

21



Stopping time argument

O0QQO0O0O0O0O0O0OL0OLOLOOOLOOO

22



Stopping time argument
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Stopping time argument

@ O O O O Q
O0QQO0O0O0O0O0O0OL0OLOLOOOLOOO

HD(R)  LD(R)
0000000
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Stopping time argument

O0QQO0O0O0O0O0O0OL0OLOLOOOLOOO

Stop(R)
O00000O0
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Stopping time argument

O0QQO O O OO0O0O0OO0O0OO0O0

Tree(R)
O00000O0
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Estimating 5 numbers on Tree(R)

Note that for P € Tree(R) we have 6,(P) = 6,(R).
Thus, 95—}’;?) “Is ADR at the scales and locations of Tree(R)".
Using the results of Nazarov-Tolsa-Volberg and David-Semmes,

we get
S 81200 04(Q) S 0.(R)u(R).

QeTree(R)
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Estimating 5 numbers on Tree(R)

Note that for P € Tree(R) we have 6,(P) = 6,(R).

Thus, 95—}’;?) “Is ADR at the scales and locations of Tree(R)".
Using the results of Nazarov-Tolsa-Volberg and David-Semmes,

we get
S 81200 04(Q) S 0.(R)u(R).

QeTree(R)

Here we use thatd =n + 1.

23



Corona decomposition

@ O O O O O Q O
O0QQO0O0O0O0O0O0OL0OLOLOOOLOOO

Topg = {Ro}
OO0OO0O0O000O0
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Corona decomposition

@ O O O O O Q O
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Corona decomposition
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Corona decomposition

Top, = URGTOp1 Stop(R)
O00000O0
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Corona decomposition

Topks1 = Urerop, Stop(R)
O00000O0

2%



Corona decomposition

Top = U, Topg
OO0O0O0000O0

2%



Corona decomposition

D, = Tree(R
0000000 MUReTop ()

2%



Estimating 5 numbers on D,

Since

Dy= |J Tree(R),
ReTop

we have

> Bua(Q20,Q = > Y B.2(Q)0.(Q)

QeD, ReTop QeTree(R)
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Estimating 5 numbers on D,

Since
Dy= |J Tree(R),
ReTop
we have
> Bu2AQ0,Q = D D> Bua(Q)6,(Q)
QeD, ReTop QeTree(R)

< D 0u(Ru(R).

ReTop

25



Estimating 5 numbers on D,

Since

we have

Y Bua(Q)0,(Q) =

QeD,,

The new goal:

> 0u(R

ReTop

I

Dy= |J Tree(R)

ReTop

Y. D> 5u2(Q)P6.(Q)

ReTop QeTree(R)
S D 0u(R’u(R)
ReTop

) S el + IRelZo + D E(4Q),
QeHE

25



Martingale decomposition

If Ch(P) denotes the children of P € D,, then for f € L?(u) we

define
Apf= > mof — mpf.
Qech(P)
The functions {Apf}p are pairwise L?(u) orthogonal, and
moreover

If — mRofoz(u) = Z HAPfoZ(N)'

PED,,
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Martingale decomposition

If Ch(P) denotes the children of P € D,, then for f € L?(u) we

define
Apf= > mof — mpf.
Qech(P)
The functions {Apf}p are pairwise L?(u) orthogonal, and
moreover

If — mRofoz(u) = Z HAPfoZ(N)'

PGD}L
Since mg,Ru = 0, we get

||RMH52(H) = Z ||APRM||fZ(u)
PED,

=D > ARl

ReTop PeTree(R)
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The variational argument

Recall that we want to show

> 04 ) S Ml + IRl + D £(4Q)

ReTop QeHE
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The variational argument

Recall that we want to show

> 04 ) S Ml + IRl + D £(4Q)

ReTop QeHE

=llul+ D > HAPRuHLz ot D Q).

ReTop PeTree(R QeHE
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The variational argument

Recall that we want to show

>~ 0u(RPu(R) S llnll + IRuliqy + D €(4Q)
ReTop QeHE
Y uApRuHLz w+ D E(4Q).
ReTop PeTree(R QeHE

We use the variational argument to show that for R € Top

0.(Ru(R) S Y ARyl + error terms.
PeTree(R)

Here we use againd = n + 1.
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The variational argument

Recall that we want to show

>~ 0u(RPu(R) S llnll + IRuliqy + D €(4Q)
ReTop QeHE
Y uApRuHLz w+ D E(4Q).
ReTop PeTree(R QeHE

We use the variational argument to show that for R € Top

0.(Ru(R) S Y ARyl + error terms.

~

PeTree(R)
Here we use againd =n +1.

| lie here a lot.
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The Wolff-type energy

The Wolff-type energy £(4Q) is defined as

- G) 3/4 )
260)= 3 () lPrue

We say that Q has high energy, Q € HE, if

£(4Q) = M, (Q)°u(Q)-

28



Thank you!
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