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Projections and dimension

Notation: for θ ∈ S1 we define πθ : R2 → R as πθ(x) = x · θ.

Theorem (Marstrand 1954)
If E ⊂ R2 has dimH(E) ≤ 1, then for a.e. θ ∈ S1

dimH(πθ(E)) = dimH(E).

If dimH(E) > 1, then for a.e. θ ∈ S1

H1(πθ(E)) > 0.

Theorem (Kaufman 1968)
If dimH(E) > 1, then E supports a probability measure µ with∫

S1
∥πθµ∥2L2 dθ < ∞.
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Projections of Frostman measures

Recall: a Radon measure µ on R2 is s-Frostman, µ ∈ Ms, if

µ(B(x, r)) ≤ rs.

Frostman’s lemma:

dimH(E) = sup{s : E supports a non-trivial s-Frostman measure}.

Question
Let 1 < s ≤ 2. For which values of 1 ≤ p,q ≤ ∞ does it hold
that for all µ ∈ Ms([0, 1]2) we have∫

S1
∥πθµ∥qLp dθ < ∞?
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Projections of Frostman measures
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Projections of Frostman measures
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What is known?

Question
Let 1 < s ≤ 2. For which values of 1 ≤ p,q ≤ ∞ does it hold
that for all µ ∈ Ms([0, 1]2) we have∫

S1
∥πθµ∥qp dθ < ∞?

• Potential analytic method of Kaufman:∫
S1
∥πθµ∥22 dθ < ∞ ∀µ ∈ Ms([0, 1]2).

• Fourier transform method of Falconer:∫
S1
∥πθµ∥22/(2−s) dθ < ∞ ∀µ ∈ Ms+ϵ([0, 1]2).

• A trivial bound for s = 2:
∥πθµ∥∞ ∈ L∞(S1) ∀µ ∈ M2([0, 1]2).
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Our result

Theorem (D.-Orponen-Villa)
Let µ be an s-Frostman measure on R2 with 1 < s ≤ 2. Then∫

S1
∥πθµ∥pLp dθ < ∞

for 1 ≤ p < (3− s)/(2− s).
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S1
∥πθµ∥pLp dθ < ∞

for 1 ≤ p < (3− s)/(2− s).

The proof:
• the desired estimate can be reinterpreted as an Lp-bound
for a family of operators involving the X-ray transform and
fractional Laplacian,

• we use Stein’s complex interpolation theorem to
interpolate between the L2-estimate of Kaufman and the
trivial L∞ bound for M2.
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Furstenberg sets

Let 0 < s ≤ 1 and 0 < t ≤ 2. We say that a set F ⊂ R2 is an
(s, t)-Furstenberg set if there exists a t-dimensional family of
lines L such that for every ℓ ∈ L we have

dimH(F ∩ ℓ) ≥ s.

F

L
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Furstenberg set problem

Question
Estimate from below the dimension of (s, t)-Furstenberg sets.

Why is this interesting?

• proposed and first studied by Wolff!
• fractal counterpart of the Kakeya conjecture
• connection to geometric combinatorics
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What is known?

Previous results due to Wolff, Katz, Tao, Bourgain, Molter, Rela,
Héra, Máthé, Keleti, Lutz, Stull, Shmerkin, Yavicoli, Orponen, Di
Benedetto, Zahl...

dimH(Fs,t) ≥



s+ t for s ∈ (0, 1] and t ∈ (0, s],
2s+ ϵ(s, t) for s ∈ (0, 1] and t ∈ (s, 2s],
2s+ t−2s

2 for s ∈ (0, 1] and t ∈ (2s, 2].

Theorem (D.-Orponen-Villa)
If s ∈ (0, 1] and t ∈ (1, 2], then

dimH(Fs,t) ≥ 2s+ (1− s)(t− 1).
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Proof idea

If s ∈ (0, 1] and t ∈ (1, 2], then dimH(F) ≥ 2s+ (1− s)(t− 1).

F

L
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Proof idea

If s ∈ (0, 1] and t ∈ (1, 2], then dimH(F) ≥ 2s+ (1− s)(t− 1).

F

L

Step 1.
Use duality to obtain a t-
dimensional set L and a
collection of lines F such
that for every x ∈ L

dimH(F(x)) ≥ s.

Let µ be a t-Frostman
measure on L.
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Proof idea

If s ∈ (0, 1] and t ∈ (1, 2], then dimH(F) ≥ 2s+ (1− s)(t− 1).

x

S1

πxµ

Step 2.
For x ∈ L consider the
“radial projections” of µ

πxµ(Θ) = µ(
∪
θ∈Θ

ℓx,θ).

If the collection F is
“small” then for many x
the measures πxµ will be
quite singular:∫

∥πxµ∥pLp(S1)dµ(x)

≥ ...(p, t, s, dimH(F)) 9
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Proof idea

If s ∈ (0, 1] and t ∈ (1, 2], then dimH(F) ≥ 2s+ (1− s)(t− 1).

Step 3.
Use Orponen’s formula∫

∥πxµ∥pLp(S1)dµ(x) =
∫
S1
∥πθµ∥p+1

Lp+1 dθ

to relate this to orthogonal projections of µ.

Step 4.
Use our result on projections of t-Frostman measures to get

...(p, t, s, dimH(F)) ≤
∫

∥πxµ∥pLp(S1)dµ(x) =
∫
S1
∥πθµ∥p+1

Lp+1 dθ < ∞.

■
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Open problems

• What about other pairs of p and q in the projections
problem? Particularly interesting the case q = 1: what’s
the largest p = p(t) so that for all µ ∈ Mt∫

S1
∥πθµ∥p dθ < ∞?

Essentially a question of Peres and Schlag from 2000.

• Our sharpness example only works for measures
µ ∈ Ms(Rd) with d− 1 < s ≤ d. Is the higher dimensional
version of our projection result sharp for measures
µ ∈ Ms(Rd) with s < d− 1?

• Can our methods be extended to study (s, t)-Furstenberg
sets for t ≤ 1?
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Thank you!
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