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If dimpy(E) > 1, then for a.e. § € S’
H(m9(E)) > 0.

Theorem (Kaufman 1968)
If dimy(E) > 1, then E supports a probability measure p with

/SW | mopulf, dO < oc.
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Recall: a Radon measure p on R? is s-Frostman, i € Ms, if
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What is known?

Question
Let 1 < s < 2. For which values of 1 < p,q < oo does it hold
that for all u € Ms([0,1]*) we have
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- Potential analytic method of Kaufman:

/81 Imosal3 d6 < oo Vi € Ms([0,1).
+ Fourier transform method of Falconer:
/S Mol g d0 <o e Msy([0,1P).

« Atrivial bound for s = 2:
Imaulloo € L(ST) Vi€ Mo([0,11). 4
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The proof:

- the desired estimate can be reinterpreted as an LP-bound
for a family of operators involving the X-ray transform and
fractional Laplacian,

- we use Stein’s complex interpolation theorem to
interpolate between the L?-estimate of Kaufman and the
trivial L* bound for M.
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Theorem (D.-Orponen-Villa)
Let u be an s-Frostman measure on R? with 1 < s < 2. Then

| Nmoufdo < o0

for1<p<(3-5)/(2—)5).

Remarks:
- The result is sharp.

- We also prove a higher-dimensional analogue.



Furstenberg sets

let0 <s<1and 0 < t<2 WesaythatasetFc R?isan
(s,t)-Furstenberg set if there exists a t-dimensional family of
lines £ such that for every £ € £ we have

dimy(FN ) > s.
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Furstenberg set problem

Question
Estimate from below the dimension of (s, t)-Furstenberg sets.

Why is this interesting?

- proposed and first studied by Wolff!
- fractal counterpart of the Kakeya conjecture

- connection to geometric combinatorics
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What is known?

Previous results due to Wolff, Katz, Tao, Bourgain, Molter, Rela,
Héra, Mathé, Keleti, Lutz, Stull, Shmerkin, Yavicoli, Orponen, Di
Benedetto, Zahl...

S+t fors e (0,1 and t € (0,s],
dimy(Fst) > ¢ 25+ €(s,t) fors e (0,1 and t € (s,29],
2s+ 52 forse (0,1 andt e (2s,2].

Theorem (D.-Orponen-Villa)
If s e (0,1 and t € (1,2], then

dimp(Fs.t) > 25+ (1— s)(t — 1).
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If s e (0,1 and t € (1,2], then dimy(F) > 2s + (1 —s)(t —1).

\ Step 1.

VR AN - U_se due_dlty to obtain a t-
| dimensional set L and a
collection of lines F such

% that for every x € L

L
> dimp(F(x)) > s.

]:

Let u be a t-Frostman

I \f\ ) I\I \ measure on L.
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If s e (0,1 and t € (1,2], then dimy(F) > 2s + (1 —s)(t —1).

Step 3.
Use Orponen’s formula

il
[ sl is0 = [ a5 oo
to relate this to orthogonal projections of p.

Step 4.
Use our result on projections of t-Frostman measures to get

Pt cimn(F) < [ Il a0 = [ I 0o < o
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Open problems
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problem? Particularly interesting the case g = 1: what's
the largest p = p(t) so that for all u € M;
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- What about other pairs of p and g in the projections
problem? Particularly interesting the case g = 1: what's
the largest p = p(t) so that for all u € M;
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Essentially a question of Peres and Schlag from 2000.

- Our sharpness example only works for measures
1€ Ms(RY) with d —1 < s < d. Is the higher dimensional
version of our projection result sharp for measures
p € Ms(RY) with s < d —1?

- Can our methods be extended to study (s, t)-Furstenberg
sets fort < 1?

n



Thank you!
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