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A compact set E C C is removable for bounded analytic
functions if for any open Q c C containing E, each bounded
analytic function f: Q\ E — C has an analytic extension to .
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Analytic capacity

In 1947 Ahlfors characterized removability in terms of analytic
capacity:

Eisremovable <« ~(E)=0,

where

A(E) = sup{If'(s0)] : f:C\ E— Canalytic, flloo < 1},
F'(00) = lim 2(f(2) ~ f(c0)).
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Painleveé Problem

Find a geometric characterization of removable compact sets,
l.e. compact sets with v(E) = 0.

Facts:

- If H'(E) = 0, then ~(E) = 0.

- If dimy(E) > 1, then y(E) > 0.

- If E is a segment, then y(E) = ¢ H'(E).
Question
v(E)=0 < H'(E)=0? No!

There are sets £ ¢ C with y(E) = 0 and 0 < H'(E) < oc.
(Vitushkin 1959, Garnett, lvanov 1970s)
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Vitushkin's conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very
small projections. More precisely, they satisfied

H'(mo(E)) = 0
for a.e. direction 6 € [0, ].

Define Favard length of E as

Fav(E) = /Oﬂ H(mo(E)) 6.

Vitushkin’s conjecture

vE)=0 < Fav(E)=0
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Rectifiability

A set E C R? is rectifiable if there exists a countable number of
1-dimensional Lipschitz graphs I'; such that

H' (E\L}JF,—) = 0.

We say that F ¢ R? is purely unrectifiable if for every
1-dimensional Lipschitz graph I’

H'(FNT) = 0.
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Four-corner Cantor set

K:mnKn

- an elementary argument gives 0 < H'(K) < oo and
Fav(K) = 0,
- y(K) = 0 (Garnett, lvanov 70s)



Projections and rectifiability
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Theorem (Besicovitch 1939)
Let E C R? with 0 < H'(E) < oc. Then
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Beware of sets with H'(E) = oo!

Besicovitch projection theorem fails terribly for sets with
H'(E) = oo: there exist purely unrectifiable sets E with
Fav(E) > 0.

Example: E = C x C, where C is the middle-thirds Cantor set.
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Solution to Vitushkin’s conjecture

vE)=0 < Fav(E)=0

In the case H'(E) < oo Vitushkin's conjecture is true! (Calderon
'77, David '98)

In the case H'(E) = oo, Vitushkin's conjecture is false (Mattila
'86).
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Open problems

Theorem (Jones-Murai '88)
There exists a set with Fav(E) = 0 and ~(E) > 0.

Problem 1 (qualitative)
Fav(E) >0 = ~(E)>07?

Open for sets E ¢ C with dimyg(E) = 1 and non-o-finite
H'-measure.

Problem 2 (quantitative)

+(E) 2 Fav(E)?
fy(E) ZFav(E) 17

Open even in the case H'(E) < oo.
10



What happens in the case H'(E) < oc?

Fav(E) >0 = ~(E)>07?

Theorem (Besicovitch 1939)

Let E C R? with 0 < H'(E) < oc. If Fav(E) > 0, then there
exists a Lipschitz graph I with

H'(ENT) > 0.
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What happens in the case H'(E) < oc?

Fav(E) >0 = ~(E)>07?

Theorem (Besicovitch 1939)

Let E C R? with 0 < H'(E) < oc. If Fav(E) > 0, then there
exists a Lipschitz graph I with

H'(ENT) > 0.
If 0 < H'(E) < oo and Fav(E) > 0, we get
(Calderon '77)

v(E) > v(ENT) >

n
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Two big problems

If 0 < H'(E) < oo and Fav(E) > 0, then by the Besicovitch
projection theorem we get

(Calderon '77)
~v(E) > ~v(ENT) >

Problems:

1. The Besicovitch projection theorem fails for sets with
H'(E) = oo!
2. There are estimates on v(ENT) depending on H'(ENT),
e.g. if [is an L-Lipschitz graph, then
Y(ENT) 2 H(ENT)...
..but the Besicovitch projection theorem gives no
quantitative bound neither on H'(ENT), nor on Lip(l)!
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New results




Sets with plenty of big projections

We say that a set E c R? has plenty of big projections (PBP) if
there exists § > 0 such that for every x € E and 0 < r < diam(E)
we have a direction 6y, € [0, 7) such that

H'(mg(EN B(x,r))) > or forall |6 — 6y, <.
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Sets with plenty of big projections

We say that a set £ C R? has (PBP) if
there exists 6 > 0 such that for every x € £ and 0 < r < diam(E)
we have a direction 6y, € [0, 7) such that

H'(mg(ENB(x,r))) > 6r forall [0 — 6y, <.
Theorem (D.-Villa)

If a compact set E C R? has PBP, then

+(E) 25 diam(E).

An analogous result holds in higher dimension and codimen-
sion for capacities 'y ,(E).
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Geometric characterization of +(E)

For a set E C R? let F(E) be the set of Radon measures
satisfying:

- supp i C E,

C (B, n) <,
- a flatness condition

Examples
* L%|o1p € F([0,7]%)
- H'|r € F(T) for any 1-Lipschitz graph T
- F(K) = {0} for the 4-corner Cantor set K
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Geometric characterization of +(E)

For a set E C R? let F(E) be the set of Radon measures
satisfying:

- supp i C E,

C (B, n) <,
- a flatness condition

//BM (x, 2 BN gdu( x) < p(E).

r

Theorem (Tolsa 2005, Azzam-Tolsa 2015)
Y(E) ~ sup{u(E) : pe€ F(E)}

Takeaway: to show y(E) > 0, it suffices to find a non-zero u €

F(E). n



Big pieces of Lipschitz graphs

We say that a set E ¢ R? is AD-regular if for any x € E and
0 < r < diam(E) we have

C'r <HYENB(x,r)) < Cr.
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Big pieces of Lipschitz graphs

We say that a set E ¢ R? is AD-regular if for any x € E and
0 < r < diam(E) we have

C'r <HYENB(x,r)) < Cr.

An AD-regular set E contains big pieces of Lipschitz graphs
(BPLG) if there exist C,L > 0 such that for every x € E and every
0 < r < diam(E) there exists an L-Lipschitz graph I' = ', with

H(ENT NB(x,r)) > Cr.
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PBP and quantitative rectifiability

Theorem (Besicovitch 1939)

Let E ¢ R? with 0 < H'(E) < oc. If Fav(E) > 0, then there
exists a Lipschitz graph I with

H'(ENT) > 0.



PBP and quantitative rectifiability

Theorem (Besicovitch 1939)

Let E ¢ R? with 0 < H'(E) < oc. If Fav(E) > 0, then there
exists a Lipschitz graph I with

H'(ENT) > 0.

Theorem (Orponen 2021)

Let E be AD-regular. If E has PBP, then it contains big pieces of
Lipschitz graphs.



PBP and quantitative rectifiability

Theorem (David-Semmes 1991)
If E is AD-regular and has BPLG, then p = H'|¢ satisfies

J[ ot P 2EED T < i)

le. u e F(E).

Corollary
If Eis AD-regular and has PBP, then p = H'| satisfies



The proof




Sketch of the proof

Theorem (D.-Villa)
If a compact set E C R? has PBP, then

+(E) 25 diam(E).

Plan:

1. Take the usual Frostman measure p on E. We'll show
w € F(E).
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Sketch of the proof

Theorem (D.-Villa)
If a compact set E C R? has PBP, then

+(E) 25 diam(E).

Plan:

1. Take the usual Frostman measure p on E. We'll show
w € F(E).

2. Multi-scale approximation of u by a family of AD-regular
measures {ng}reroots (COrona decomposition).

3. Each nr has PBP; apply Orponen’s result to get an estimate
on Byg,2-

4. Transfer the estimates to 5, to conclude p € F(E).
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Step 1. Frostman measure

Let E ¢ R? be a compact set with PBP. Our goal is to find a
non-zero measure p € F(E), i.e. a measure p supported on E
satisfying u(B(x,r)) < rand

J [ ot 2B R < e,

r
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Frostman’s Lemma

Given a compact set E c R? there exists a measure
supported on E such that u(E) ~ ] (E) and
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Step 1. Frostman measure

Let E ¢ R? be a compact set with PBP. Our goal is to find a
non-zero measure p € F(E), l.e. a measure p supported on £
satisfying u(B(x,r)) < rand

J[ ot P 2EED T < i)

r

Frostman’s Lemma

Given a compact set E c R? there exists a measure
supported on E such that u(E) ~ ] (E) and

u(B(x,n) <r.

Warning: It is not true that for any n with suppn C E and linear
growth we have n € F(E)! S



Step 2. Approximation by AD-regular measures

We perform a multi-scale approximation of the Frostman
measure p by a family of AD-regular measures {ng}reroots-

~_
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Steps 3 and 4. Approximating measures are flat

Each ng inherits the PBP property from the set E. Since ng are
AD-regular, we get from Orponen’s result

J[ Buatx B I ) < )
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Steps 3 and 4. Approximating measures are flat

Each ng inherits the PBP property from the set E. Since ng are
AD-regular, we get from Orponen’s result

J[ ot B I ) < )

r

Summing over all R € Roots and using the fact that ng
approximate p quite well, one can derive

dr
J[ ot P22 Sy < e,
Hence, u € F(E) and by the Azzam-Tolsa result

E) 2 1(E) ~ HL(E) ~ diam(E).
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Questions

Can we replace PBP by “uniformly large Favard length™

Question
Suppose E is compact, and for all x € Eand 0 < r < diam(E)
we have Fav(EN B(x,r)) 2 r. Does this imply v(E) 2 diam(E)?

This would immediately follow from the following:

Conjecture

Suppose E C [0,1]? is AD-regular. If Fav(E) 2 1, then there
exists a Lipschitz graph I with Lip(I') < 1and

H(ENT) > 1.
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Questions

How does PBP relate to the “L?-projections” property of Chang-
Tolsa?
Theorem (Chang-Tolsa 2019)

Let | C [0,7) be an interval. If E C R? is compact and it
supports a measure p such that myu € L% for a.e. § € |, then
~(E) > 0. More precisely,

p(E)?
YE)Z -
EVZ T Tmonls o
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Thank you!
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