# Vitushkin's conjecture and sets with plenty of big projections

Damian Dąbrowski

Based on joint work with Michele Villa



#### **Removable sets**

A compact set  $E \subset \mathbb{C}$  is removable for bounded analytic functions if for any open  $\Omega \subset \mathbb{C}$  containing E, each bounded analytic function  $f: \Omega \setminus E \to \mathbb{C}$  has an analytic extension to  $\Omega$ .



#### **Removable sets**

A compact set  $E \subset \mathbb{C}$  is removable for bounded analytic functions if for any open  $\Omega \subset \mathbb{C}$  containing E, each bounded analytic function  $f: \Omega \setminus E \to \mathbb{C}$  has an analytic extension to  $\Omega$ .



#### **Removable sets**

A compact set  $E \subset \mathbb{C}$  is removable for bounded analytic functions if for any open  $\Omega \subset \mathbb{C}$  containing E, each bounded analytic function  $f: \Omega \setminus E \to \mathbb{C}$  has an analytic extension to  $\Omega$ .



In 1947 Ahlfors characterized removability in terms of **analytic capacity**:

E is removable 
$$\,\,\, \Leftrightarrow \,\,\, \gamma(E) =$$
 0,

where

$$\begin{split} \gamma(E) &= \sup\{|f'(\infty)| \ : \ f : \mathbb{C} \setminus E \to \mathbb{C} \text{ analytic, } \|f\|_{\infty} \leq 1\}, \\ f'(\infty) &= \lim_{z \to \infty} z(f(z) - f(\infty)). \end{split}$$

#### Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with  $\gamma(E) = 0$ .

#### Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with  $\gamma(E) = 0$ .

Facts:

- If  $\mathcal{H}^1(E) = 0$ , then  $\gamma(E) = 0$ .
- If dim<sub>H</sub>(E) > 1, then  $\gamma(E) > 0$ .

#### Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with  $\gamma(E) = 0$ .

Facts:

- If  $\mathcal{H}^1(E) = 0$ , then  $\gamma(E) = 0$ .
- If dim<sub>H</sub>(E) > 1, then  $\gamma(E) > 0$ .
- If *E* is a segment, then  $\gamma(E) = c \mathcal{H}^1(E)$ .

#### Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with  $\gamma(E) = 0$ .

Facts:

- If  $\mathcal{H}^1(E) = 0$ , then  $\gamma(E) = 0$ .
- If dim<sub>H</sub>(E) > 1, then  $\gamma(E) > 0$ .
- If *E* is a segment, then  $\gamma(E) = c \mathcal{H}^1(E)$ .

#### Question

 $\gamma(E) = 0 \quad \Leftrightarrow \quad \mathcal{H}^1(E) = 0?$ 

#### Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with  $\gamma(E) = 0$ .

Facts:

- If  $\mathcal{H}^1(E) = 0$ , then  $\gamma(E) = 0$ .
- If dim<sub>H</sub>(E) > 1, then  $\gamma(E) > 0$ .
- If *E* is a segment, then  $\gamma(E) = c \mathcal{H}^1(E)$ .

#### Question

 $\gamma(E) = 0 \quad \Leftrightarrow \quad \mathcal{H}^1(E) = 0? \text{ No!}$ 

There are sets  $E \subset \mathbb{C}$  with  $\gamma(E) = 0$  and  $0 < \mathcal{H}^1(E) < \infty$ . (Vitushkin 1959, Garnett, Ivanov 1970s)

## Vitushkin's conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

 $\mathcal{H}^1(\pi_\theta(E))=0$ 

for a.e. direction  $\theta \in [0, \pi]$ .

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

 $\mathcal{H}^1(\pi_\theta(E))=0$ 

for a.e. direction  $\theta \in [0, \pi]$ .

Define Favard length of E as

$$\mathsf{Fav}(E) = \int_0^{\pi} \mathcal{H}^1(\pi_{\theta}(E)) \ d\theta.$$

#### Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

A set  $E \subset \mathbb{R}^2$  is **rectifiable** if there exists a countable number of 1-dimensional Lipschitz graphs  $\Gamma_i$  such that

$$\mathcal{H}^1\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

A set  $E \subset \mathbb{R}^2$  is **rectifiable** if there exists a countable number of 1-dimensional Lipschitz graphs  $\Gamma_i$  such that

$$\mathcal{H}^1\left(E\setminus\bigcup_i \Gamma_i\right)=0.$$

We say that  $F \subset \mathbb{R}^2$  is **purely unrectifiable** if for every 1-dimensional Lipschitz graph  $\Gamma$ 

 $\mathcal{H}^1(F\cap \Gamma)=0.$ 















- an elementary argument gives  $0 < \mathcal{H}^1(K) < \infty$  and Fav(K) = 0,
- $\cdot \gamma(K) = 0$  (Garnett, Ivanov 70s)

## Projections and rectifiability

Theorem (Besicovitch 1939) Let  $E \subset \mathbb{R}^2$  with  $0 < \mathcal{H}^1(E) < \infty$ . Then

*E* is purely unrectifiable  $\Leftrightarrow$  Fav(*E*) = 0.



## Projections and rectifiability

Theorem (Besicovitch 1939) Let  $E \subset \mathbb{R}^2$  with  $0 < \mathcal{H}^1(E) < \infty$ . Then

*E* is purely unrectifiable  $\Leftrightarrow$  Fav(*E*) = 0.



## Beware of sets with $\mathcal{H}^1(E) = \infty!$

Besicovitch projection theorem fails terribly for sets with  $\mathcal{H}^1(E) = \infty$ : there exist purely unrectifiable sets *E* with Fav(E) > 0.

Example:  $E = C \times C$ , where C is the middle-thirds Cantor set.



#### Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

In the case  $\mathcal{H}^1(E) < \infty$  Vitushkin's conjecture is **true**! (Calderón '77, David '98)

#### Vitushkin's conjecture

$$\gamma(E) = 0 \quad \Leftrightarrow \quad \mathsf{Fav}(E) = 0$$

In the case  $\mathcal{H}^1(E) < \infty$  Vitushkin's conjecture is **true**! (Calderón '77, David '98)

In the case  $\mathcal{H}^1(E) = \infty$ , Vitushkin's conjecture is **false** (Mattila '86).

#### Open problems

#### Theorem (Jones-Murai '88)

There exists a set with Fav(E) = 0 and  $\gamma(E) > 0$ .

#### Open problems

Theorem (Jones-Murai '88)

There exists a set with Fav(E) = 0 and  $\gamma(E) > 0$ .

#### Problem 1 (qualitative)

$$Fav(E) > 0 \implies \gamma(E) > 0?$$

Open for sets  $E \subset \mathbb{C}$  with  $\dim_H(E) = 1$  and non- $\sigma$ -finite  $\mathcal{H}^1$ -measure.

#### Open problems

Theorem (Jones-Murai '88)

There exists a set with Fav(E) = 0 and  $\gamma(E) > 0$ .

#### Problem 1 (qualitative)

$$Fav(E) > 0 \implies \gamma(E) > 0?$$

Open for sets  $E \subset \mathbb{C}$  with dim<sub>*H*</sub>(E) = 1 and non- $\sigma$ -finite  $\mathcal{H}^1$ -measure.

Problem 2 (quantitative)

 $\gamma(E) \gtrsim Fav(E)?$  $\gamma(E) \gtrsim_{Fav(E)} 1?$ 

Open even in the case  $\mathcal{H}^1(E) < \infty$ .

## What happens in the case $\mathcal{H}^1(E) < \infty$ ?

$$Fav(E) > 0 \implies \gamma(E) > 0?$$

**Theorem (Besicovitch 1939)** Let  $E \subset \mathbb{R}^2$  with  $0 < \mathcal{H}^1(E) < \infty$ . If Fav(E) > 0, then there exists a Lipschitz graph  $\Gamma$  with

 $\mathcal{H}^1(E\cap \Gamma)>0.$ 

## What happens in the case $\mathcal{H}^1(E) < \infty$ ?

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0?$$

**Theorem (Besicovitch 1939)** Let  $E \subset \mathbb{R}^2$  with  $0 < \mathcal{H}^1(E) < \infty$ . If Fav(E) > 0, then there exists a Lipschitz graph  $\Gamma$  with

 $\mathcal{H}^1(E\cap \Gamma)>0.$ 

If  $0 < \mathcal{H}^{1}(E) < \infty$  and Fav(E) > 0, we get  $\gamma(E) \ge \gamma(E \cap \Gamma) \overset{(Calderón '77)}{>} 0.$ 

## If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem we get

$$\gamma(E) \geq \gamma(E \cap \Gamma) > 0.$$

Problems:

If  $0 < \mathcal{H}^1(E) < \infty$  and Fav(E) > 0, then by the Besicovitch projection theorem we get

$$\gamma(E) \geq \gamma(E \cap \Gamma) > 0.$$

Problems:

1. The Besicovitch projection theorem fails for sets with  $\mathcal{H}^1(E) = \infty!$ 

If  $0 < \mathcal{H}^1(E) < \infty$  and Fav(E) > 0, then by the Besicovitch projection theorem we get

$$\gamma(E) \geq \gamma(E \cap \Gamma) > 0.$$

Problems:

- 1. The Besicovitch projection theorem fails for sets with  $\mathcal{H}^1(E) = \infty!$
- 2. There are estimates on  $\gamma(E \cap \Gamma)$  depending on  $\mathcal{H}^1(E \cap \Gamma)$ , e.g. if  $\Gamma$  is an *L*-Lipschitz graph, then

 $\gamma(E \cap \Gamma) \gtrsim_L \mathcal{H}^1(E \cap \Gamma)...$ 

If  $0 < \mathcal{H}^1(E) < \infty$  and Fav(E) > 0, then by the Besicovitch projection theorem we get

$$\gamma(E) \geq \gamma(E \cap \Gamma) > 0.$$

Problems:

- 1. The Besicovitch projection theorem fails for sets with  $\mathcal{H}^1(E) = \infty!$
- 2. There are estimates on  $\gamma(E \cap \Gamma)$  depending on  $\mathcal{H}^1(E \cap \Gamma)$ , e.g. if  $\Gamma$  is an *L*-Lipschitz graph, then

 $\gamma(E \cap \Gamma) \gtrsim_L \mathcal{H}^1(E \cap \Gamma)...$ 

...but the Besicovitch projection theorem gives **no quantitative bound** neither on  $\mathcal{H}^1(E \cap \Gamma)$ , nor on Lip( $\Gamma$ )! New results

## Sets with plenty of big projections

We say that a set  $E \subset \mathbb{R}^2$  has plenty of big projections (PBP) if there exists  $\delta > 0$  such that for every  $x \in E$  and 0 < r < diam(E)we have a direction  $\theta_{x,r} \in [0, \pi)$  such that

 $\mathcal{H}^{1}(\pi_{\theta}(E \cap B(x, r))) \geq \delta r \quad \text{for all} \quad |\theta - \theta_{x, r}| < \delta.$ 



## Sets with plenty of big projections

We say that a set  $E \subset \mathbb{R}^2$  has plenty of big projections (PBP) if there exists  $\delta > 0$  such that for every  $x \in E$  and 0 < r < diam(E)we have a direction  $\theta_{x,r} \in [0, \pi)$  such that

 $\mathcal{H}^1(\pi_{\theta}(E \cap B(x, r))) \geq \delta r \text{ for all } |\theta - \theta_{x,r}| < \delta.$ 



## Sets with plenty of big projections

We say that a set  $E \subset \mathbb{R}^2$  has plenty of big projections (PBP) if there exists  $\delta > 0$  such that for every  $x \in E$  and 0 < r < diam(E)we have a direction  $\theta_{x,r} \in [0, \pi)$  such that

 $\mathcal{H}^1(\pi_{\theta}(E \cap B(x, r))) \geq \delta r \text{ for all } |\theta - \theta_{x,r}| < \delta.$ 

Theorem (D.-Villa) If a compact set  $E \subset \mathbb{R}^2$  has PBP, then  $\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E).$ 

An analogous result holds in higher dimension and codimension for capacities  $\Gamma_{d,n}(E)$ .

Two crucial blackboxes

For a set  $E \subset \mathbb{R}^2$  let  $\mathcal{F}(E)$  be the set of Radon measures satisfying:

 $\cdot \, \operatorname{supp} \mu \subset \mathit{E}\text{,}$ 

For a set  $E \subset \mathbb{R}^2$  let  $\mathcal{F}(E)$  be the set of Radon measures satisfying:

- $\cdot \, \operatorname{supp} \mu \subset \mathit{E}\text{,}$
- $\mu(B(x,r)) \leq r$ ,

For a set  $E \subset \mathbb{R}^2$  let  $\mathcal{F}(E)$  be the set of Radon measures satisfying:

- $\cdot \, \operatorname{supp} \mu \subset \mathit{E}\text{,}$
- $\mu(B(x,r)) \leq r$ ,
- $\cdot$  a flatness condition

$$\iint \beta_{\mu,2}(x,r)^2 \, \frac{\mu(B(x,r))}{r} \, \frac{dr}{r} d\mu(x) \le \mu(E).$$

For a set  $E \subset \mathbb{R}^2$  let  $\mathcal{F}(E)$  be the set of Radon measures satisfying:

- $\cdot \, \operatorname{supp} \mu \subset \mathit{E}\text{,}$
- $\mu(B(x,r)) \leq r$ ,
- a flatness condition

$$\iint \beta_{\mu,2}(x,r)^2 \, \frac{\mu(B(x,r))}{r} \, \frac{dr}{r} d\mu(x) \le \mu(E).$$

Examples:

- $\mathcal{L}^2|_{[0,1]^2} \in \mathcal{F}([0,1]^2)$
- $\cdot \ \mathcal{H}^1|_{\Gamma} \in \mathcal{F}(\Gamma)$  for any 1-Lipschitz graph  $\Gamma$
- $\mathcal{F}(K) = \{0\}$  for the 4-corner Cantor set K

For a set  $E \subset \mathbb{R}^2$  let  $\mathcal{F}(E)$  be the set of Radon measures satisfying:

- $\cdot \, \operatorname{supp} \mu \subset \mathit{E}\text{,}$
- $\mu(B(x,r)) \leq r$ ,
- a flatness condition

$$\iint \beta_{\mu,2}(x,r)^2 \, \frac{\mu(B(x,r))}{r} \, \frac{dr}{r} d\mu(x) \leq \mu(E).$$

#### Theorem (Tolsa 2005, Azzam-Tolsa 2015)

 $\gamma(E) \sim \sup\{\mu(E) : \mu \in \mathcal{F}(E)\}$ 

Takeaway: to show  $\gamma(E) > 0$ , it suffices to find a non-zero  $\mu \in \mathcal{F}(E)$ .

We say that a set  $E \subset \mathbb{R}^2$  is **AD-regular** if for any  $x \in E$  and 0 < r < diam(E) we have

 $C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$ 

We say that a set  $E \subset \mathbb{R}^2$  is **AD-regular** if for any  $x \in E$  and 0 < r < diam(E) we have

 $C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$ 

An AD-regular set *E* contains **big pieces of Lipschitz graphs** (BPLG) if there exist C, L > 0 such that for every  $x \in E$  and every 0 < r < diam(E) there exists an *L*-Lipschitz graph  $\Gamma = \Gamma_{x,r}$  with

 $\mathcal{H}^1(E \cap \Gamma \cap B(x,r)) \geq Cr.$ 











#### Theorem (Besicovitch 1939)

Let  $E \subset \mathbb{R}^2$  with  $0 < \mathcal{H}^1(E) < \infty$ . If Fav(E) > 0, then there exists a Lipschitz graph  $\Gamma$  with

 $\mathcal{H}^1(E\cap \Gamma)>0.$ 

#### Theorem (Besicovitch 1939)

Let  $E \subset \mathbb{R}^2$  with  $0 < \mathcal{H}^1(E) < \infty$ . If Fav(E) > 0, then there exists a Lipschitz graph  $\Gamma$  with

 $\mathcal{H}^1(E\cap \Gamma)>0.$ 

#### Theorem (Orponen 2021)

Let *E* be AD-regular. If *E* has PBP, then it contains big pieces of Lipschitz graphs.

#### Theorem (David-Semmes 1991)

If E is AD-regular and has BPLG, then  $\mu = \mathcal{H}^1|_E$  satisfies

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \lesssim \mu(E),$$

i.e.  $\mu \in \mathcal{F}(E)$ .

#### Corollary

If *E* is AD-regular and has PBP, then  $\mu = \mathcal{H}^1|_E$  satisfies

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \lesssim \mu(E).$$

The proof

#### Theorem (D.-Villa)

If a compact set  $E \subset \mathbb{R}^2$  has PBP, then

```
\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E).
```

Plan:

1. Take the usual Frostman measure  $\mu$  on *E*. We'll show  $\mu \in \mathcal{F}(E)$ .

#### Theorem (D.-Villa)

If a compact set  $E \subset \mathbb{R}^2$  has PBP, then

```
\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E).
```

Plan:

- 1. Take the usual Frostman measure  $\mu$  on *E*. We'll show  $\mu \in \mathcal{F}(E)$ .
- 2. Multi-scale approximation of  $\mu$  by a family of AD-regular measures  $\{\eta_R\}_{R \in \text{Roots}}$  (corona decomposition).

#### Theorem (D.-Villa)

If a compact set  $E \subset \mathbb{R}^2$  has PBP, then

```
\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E).
```

Plan:

- 1. Take the usual Frostman measure  $\mu$  on *E*. We'll show  $\mu \in \mathcal{F}(E)$ .
- 2. Multi-scale approximation of  $\mu$  by a family of AD-regular measures  $\{\eta_R\}_{R \in \text{Roots}}$  (corona decomposition).
- 3. Each  $\eta_{\rm R}$  has PBP; apply Orponen's result to get an estimate on  $\beta_{\eta_{\rm R},2}$ .

#### Theorem (D.-Villa)

If a compact set  $E \subset \mathbb{R}^2$  has PBP, then

```
\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E).
```

Plan:

- 1. Take the usual Frostman measure  $\mu$  on *E*. We'll show  $\mu \in \mathcal{F}(E)$ .
- 2. Multi-scale approximation of  $\mu$  by a family of AD-regular measures  $\{\eta_R\}_{R \in \text{Roots}}$  (corona decomposition).
- 3. Each  $\eta_R$  has PBP; apply Orponen's result to get an estimate on  $\beta_{\eta_R,2}$ .
- 4. Transfer the estimates to  $\beta_{\mu,2}$  to conclude  $\mu \in \mathcal{F}(E)$ .

#### Step 1. Frostman measure

Let  $E \subset \mathbb{R}^2$  be a compact set with PBP. Our goal is to find a non-zero measure  $\mu \in \mathcal{F}(E)$ , i.e. a measure  $\mu$  supported on Esatisfying  $\mu(B(x, r)) \leq r$  and

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \le \mu(E).$$

#### Step 1. Frostman measure

Let  $E \subset \mathbb{R}^2$  be a compact set with PBP. Our goal is to find a non-zero measure  $\mu \in \mathcal{F}(E)$ , i.e. a measure  $\mu$  supported on Esatisfying  $\mu(B(x, r)) \leq r$  and

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \le \mu(E).$$

#### Frostman's Lemma

Given a compact set  $E \subset \mathbb{R}^2$  there exists a measure  $\mu$ supported on E such that  $\mu(E) \sim \mathcal{H}^1_{\infty}(E)$  and

 $\mu(B(x,r)) \leq r.$ 

Let  $E \subset \mathbb{R}^2$  be a compact set with PBP. Our goal is to find a non-zero measure  $\mu \in \mathcal{F}(E)$ , i.e. a measure  $\mu$  supported on Esatisfying  $\mu(B(x, r)) \leq r$  and

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \le \mu(E).$$

#### Frostman's Lemma

Given a compact set  $E \subset \mathbb{R}^2$  there exists a measure  $\mu$ supported on E such that  $\mu(E) \sim \mathcal{H}^1_{\infty}(E)$  and

 $\mu(B(x,r)) \leq r.$ 

Warning: It is **not** true that for any  $\eta$  with supp  $\eta \subset E$  and linear growth we have  $\eta \in \mathcal{F}(E)$ !

## Step 2. Approximation by AD-regular measures

We perform a multi-scale approximation of the Frostman measure  $\mu$  by a family of AD-regular measures  $\{\eta_R\}_{R \in \text{Roots}}$ .



## Step 2. Approximation by AD-regular measures

We perform a multi-scale approximation of the Frostman measure  $\mu$  by a family of AD-regular measures  $\{\eta_R\}_{R \in \text{Roots}}$ .



## Step 2. Approximation by AD-regular measures

We perform a multi-scale approximation of the Frostman measure  $\mu$  by a family of AD-regular measures  $\{\eta_R\}_{R \in \text{Roots}}$ .





## Steps 3 and 4. Approximating measures are flat

Each  $\eta_R$  inherits the PBP property from the set *E*. Since  $\eta_R$  are AD-regular, we get from Orponen's result

$$\iint \beta_{\eta_R,2}(x,r)^2 \frac{\eta_R(B(x,r))}{r} \frac{dr}{r} d\eta_R(x) \lesssim \eta_R(E).$$

## Steps 3 and 4. Approximating measures are flat

Each  $\eta_R$  inherits the PBP property from the set *E*. Since  $\eta_R$  are AD-regular, we get from Orponen's result

$$\iint \beta_{\eta_R,2}(x,r)^2 \frac{\eta_R(B(x,r))}{r} \frac{dr}{r} d\eta_R(x) \lesssim \eta_R(E).$$

Summing over all  $R \in \text{Roots}$  and using the fact that  $\eta_R$  approximate  $\mu$  quite well, one can derive

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \lesssim \mu(E).$$

Hence,  $\mu \in \mathcal{F}(E)$  and by the Azzam-Tolsa result

 $\gamma(E) \gtrsim \mu(E) \sim \mathcal{H}^1_\infty(E) \sim \operatorname{diam}(E).$ 

## Questions

Can we replace PBP by "uniformly large Favard length":

#### Question

Suppose *E* is compact, and for all  $x \in E$  and 0 < r < diam(E) we have  $\text{Fav}(E \cap B(x, r)) \gtrsim r$ . Does this imply  $\gamma(E) \gtrsim \text{diam}(E)$ ?

This would immediately follow from the following:

#### Conjecture

Suppose  $E \subset [0, 1]^2$  is AD-regular. If  $Fav(E) \gtrsim 1$ , then there exists a Lipschitz graph  $\Gamma$  with  $Lip(\Gamma) \lesssim 1$  and

 $\mathcal{H}^1(E \cap \Gamma) \gtrsim 1.$ 

How does PBP relate to the "*L*<sup>2</sup>-projections" property of Chang-Tolsa?

#### Theorem (Chang-Tolsa 2019)

Let  $I \subset [0, \pi)$  be an interval. If  $E \subset \mathbb{R}^2$  is compact and it supports a measure  $\mu$  such that  $\pi_{\theta}\mu \in L^2$  for a.e.  $\theta \in I$ , then  $\gamma(E) > 0$ . More precisely,

$$\gamma(E) \gtrsim rac{\mu(E)^2}{\int_I \|\pi_{ heta}\mu\|_{L^2}^2 \, \mathrm{d} heta}$$

## Thank you!