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Analytic capacity

In 1947 Ahlfors characterized removability in terms of analytic
capacity:

E is removable ⇔ γ(E) = 0,

where

γ(E) = sup{|f ′(∞)| : f : C \ E → C analytic, ∥f∥∞ ≤ 1},
f ′(∞) = lim

z→∞
z(f(z)− f(∞)).
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Painlevé Problem

Painlevé Problem
Find a geometric characterization of removable compact sets,
i.e. compact sets with γ(E) = 0.

Facts:

• If H1(E) = 0, then γ(E) = 0.
• If dimH(E) > 1, then γ(E) > 0.
• If E is a segment, then γ(E) = cH1(E).

Question
γ(E) = 0 ⇔ H1(E) = 0? No!

There are sets E ⊂ C with γ(E) = 0 and 0 < H1(E) < ∞.
(Vitushkin 1959, Garnett, Ivanov 1970s)
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Vitushkin’s conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very
small projections. More precisely, they satisfied

H1(πθ(E)) = 0

for a.e. direction θ ∈ [0, π].

Define Favard length of E as

Fav(E) =
∫ π

0
H1(πθ(E)) dθ.

Vitushkin’s conjecture

γ(E) = 0 ⇔ Fav(E) = 0
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Rectifiability

A set E ⊂ R2 is rectifiable if there exists a countable number of
1-dimensional Lipschitz graphs Γi such that

H1

(
E \
∪
i
Γi

)
= 0.

We say that F ⊂ R2 is purely unrectifiable if for every
1-dimensional Lipschitz graph Γ

H1(F ∩ Γ) = 0.
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Four-corner Cantor set

K1
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Four-corner Cantor set

K2
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Four-corner Cantor set

K3
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Four-corner Cantor set

K =
∩

n Kn

• an elementary argument gives 0 < H1(K) < ∞ and
Fav(K) = 0,

• γ(K) = 0 (Garnett, Ivanov 70s)
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Projections and rectifiability

Theorem (Besicovitch 1939)
Let E ⊂ R2 with 0 < H1(E) < ∞. Then

E is purely unrectifiable ⇔ Fav(E) = 0.

The implication ”⇒” is false for sets with H1(E) = ∞! There
exist purely unrectifiable sets with Fav > 0 (Falconer 80s).
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Solution to Vitushkin’s conjecture

Vitushkin’s conjecture

γ(E) = 0 ⇔ Fav(E) = 0

In the case H1(E) < ∞ Vitushkin’s conjecture is true! (Calderón
’77, David ’98)

In the case H1(E) = ∞, Vitushkin’s conjecture is false (Mattila
’86).
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Open problems

Theorem (Jones-Murai ’88)
There exists a set with Fav(E) = 0 and γ(E) > 0.

Problem 1 (qualitative)

Fav(E) > 0 ⇒ γ(E) > 0?

Open for sets E ⊂ C with dimH(E) = 1 and non-σ-finite
H1-measure.

Problem 2 (quantitative)

γ(E) ≳ Fav(E)?
γ(E) ≳Fav(E) 1?

Open even in the case H1(E) < ∞.
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What happens in the case H1(E) < ∞?

Fav(E) > 0 ⇒ γ(E) > 0?

Theorem (Besicovitch 1939)
Let E ⊂ R2 with 0 < H1(E) < ∞. If Fav(E) > 0, then there
exists a Lipschitz graph Γ with

H1(E ∩ Γ) > 0.

If 0 < H1(E) < ∞ and Fav(E) > 0, we get

γ(E) ≥ γ(E ∩ Γ)
(Calderón ’77)

> 0.
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Two big problems

If 0 < H1(E) < ∞ and Fav(E) > 0, then by the Besicovitch
projection theorem we get

γ(E) ≥ γ(E ∩ Γ)
(Calderón ’77)

> 0.

Problems:

1. The Besicovitch projection theorem fails for sets with
H1(E) = ∞!

2. There are estimates on γ(E ∩ Γ) depending on H1(E ∩ Γ),
e.g. if Γ is an L-Lipschitz graph, then

γ(E ∩ Γ) ≳L H1(E ∩ Γ)...

...but the Besicovitch projection theorem gives no
quantitative bound neither on H1(E ∩ Γ), nor on Lip(Γ)!
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Quantifying Besicovitch projection theorem is hard

In fact, for any ε > 0 there exists a set E = E(ε) ⊂ [0, 1]2 with
H1(E) ∼ 1 and Fav(E) ≳ 1 such that for all L-Lipschitz graphs Γ

H1(E ∩ Γ) ≲ Lε.

ε2

ε

E consists of ε−2 uniformly distributed circles of radius ε2. 12



New results



Sets with plenty of big projections

We say that a set E ⊂ R2 has plenty of big projections (PBP) if
there exists δ > 0 such that for every x ∈ E and 0 < r < diam(E)
we have a direction θx,r ∈ [0, π) such that

H1(πθ(E ∩ B(x, r))) ≥ δr for all |θ − θx,r| < δ.
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we have a direction θx,r ∈ [0, π) such that

H1(πθ(E ∩ B(x, r))) ≥ δr for all |θ − θx,r| < δ.

Theorem (D.-Villa)
If a compact set E ⊂ R2 has PBP, then

γ(E) ≳δ diam(E).

An analogous result holds in higher dimension and codimen-
sion for capacities Γd,n(E).
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Two crucial blackboxes



Geometric characterization of γ(E)

For a set E ⊂ R2 let F(E) be the set of Radon measures
satisfying:

• suppµ ⊂ E,

• µ(B(x, r)) ≤ r,
• a flatness condition∫∫

βµ,2(x, r)2
µ(B(x, r))

r
dr
r dµ(x) ≤ µ(E).
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• µ(B(x, r)) ≤ r,
• a flatness condition∫∫

βµ,2(x, r)2
µ(B(x, r))

r
dr
r dµ(x) ≤ µ(E).

Examples:
• L2|[0,1]2 ∈ F([0, 1]2)
• H1|Γ ∈ F(Γ) for any 1-Lipschitz graph Γ

• F(K) = {0} for the 4-corner Cantor set K
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Geometric characterization of γ(E)

For a set E ⊂ R2 let F(E) be the set of Radon measures
satisfying:

• suppµ ⊂ E,
• µ(B(x, r)) ≤ r,
• a flatness condition∫∫

βµ,2(x, r)2
µ(B(x, r))

r
dr
r dµ(x) ≤ µ(E).

Theorem (Tolsa 2005, Azzam-Tolsa 2015)

γ(E) ∼ sup{µ(E) : µ ∈ F(E)}

Takeaway: to show γ(E) > 0, it suffices to find a non-zero µ ∈
F(E).
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Big pieces of Lipschitz graphs

We say that a set E ⊂ R2 is AD-regular if for any x ∈ E and
0 < r < diam(E) we have

C−1r ≤ H1(E ∩ B(x, r)) ≤ Cr.

An AD-regular set E contains big pieces of Lipschitz graphs
(BPLG) if there exist C, L > 0 such that for every x ∈ E and every
0 < r < diam(E) there exists an L-Lipschitz graph Γ = Γx,r with

H1(E ∩ Γ ∩ B(x, r)) ≥ Cr.
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PBP and quantitative rectifiability

Theorem (Besicovitch 1939)
Let E ⊂ R2 with 0 < H1(E) < ∞. If Fav(E) > 0, then there
exists a Lipschitz graph Γ with

H1(E ∩ Γ) > 0.

Theorem (Orponen 2021)
Let E be AD-regular. If E has PBP, then it contains big pieces of
Lipschitz graphs.
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PBP and quantitative rectifiability

Theorem (David-Semmes 1991)
If E is AD-regular and has BPLG, then µ = H1|E satisfies∫∫

βµ,2(x, r)2
µ(B(x, r))

r
dr
r dµ(x) ≲ µ(E),

i.e. µ ∈ F(E).

Corollary
If E is AD-regular and has PBP, then µ = H1|E satisfies∫∫

βµ,2(x, r)2
µ(B(x, r))

r
dr
r dµ(x) ≲ µ(E).

18



The proof



Sketch of the proof

Theorem (D.-Villa)
If a compact set E ⊂ R2 has PBP, then

γ(E) ≳δ diam(E).

Plan:

1. Take the usual Frostman measure µ on E. We’ll show
µ ∈ F(E).

2. Multi-scale approximation of µ by a family of AD-regular
measures {ηR}R∈Roots (corona decomposition).

3. Each ηR has PBP; apply Orponen’s result to get an estimate
on βηR,2.

4. Transfer the estimates to βµ,2 to conclude µ ∈ F(E).
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Step 1. Frostman measure

Let E ⊂ R2 be a compact set with PBP. Our goal is to find a
non-zero measure µ ∈ F(E), i.e. a measure µ supported on E
satisfying µ(B(x, r)) ≤ r and∫∫

βµ,2(x, r)2
µ(B(x, r))

r
dr
r dµ(x) ≤ µ(E).

Frostman’s Lemma
Given a compact set E ⊂ R2 there exists a measure µ

supported on E such that µ(E) ∼ H1
∞(E) and

µ(B(x, r)) ≤ r.

Warning: It is not true that for any η with supp η ⊂ E and linear
growth we have η ∈ F(E)!
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Step 2. Approximation by AD-regular measures

We perform a multi-scale approximation of the Frostman
measure µ by a family of AD-regular measures {ηR}R∈Roots.

E 21
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Step 2. Approximation by AD-regular measures

We perform a multi-scale approximation of the Frostman
measure µ by a family of AD-regular measures {ηR}R∈Roots.

In technical terms:
• We decompose the David-Christ lattice D into a family of
trees {T (R)}R∈Roots such that µ “is AD-regular in each
T (R).”

• To do that, we conduct a stopping time argument involving
a single condition:

Q ∈ LD(R) ⇔ µ(Q)
ℓ(Q) ≤ 0.1 µ(R)

ℓ(R) .

• We construct an approximating measure ηR for each T (R).
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Steps 3 and 4. Approximating measures are flat

Each ηR inherits the PBP property from the set E. Since ηR are
AD-regular, we get from Orponen’s result∫∫

βηR,2(x, r)2
ηR(B(x, r))

r
dr
r dηR(x) ≲ ηR(E).

Summing over all R ∈ Roots and using the fact that ηR
approximate µ quite well, one can derive∫∫

βµ,2(x, r)2
µ(B(x, r))

r
dr
r dµ(x) ≲

∑
R∈Roots

(
µ(R)
ℓ(R)

)2
µ(R)

≲ µ(E).

Hence, µ ∈ F(E) and by the Azzam-Tolsa result

γ(E) ≳ µ(E) ∼ H1
∞(E) ∼ diam(E).

■
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■
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Steps 3 and 4. Approximating measures are flat

Each ηR inherits the PBP property from the set E. Since ηR are
AD-regular, we get from Orponen’s result∫∫

βηR,2(x, r)2
ηR(B(x, r))

r
dr
r dηR(x) ≲ ηR(E).

Summing over all R ∈ Roots and using the fact that ηR
approximate µ quite well, one can derive∫∫

βµ,2(x, r)2
µ(B(x, r))

r
dr
r dµ(x) ≲

∑
R∈Roots

(
µ(R)
ℓ(R)

)2
µ(R)

≲ µ(E).

Hence, µ ∈ F(E) and by the Azzam-Tolsa result

γ(E) ≳ µ(E) ∼ H1
∞(E) ∼ diam(E).

■
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Questions

Can we replace PBP by “uniformly large Favard length”: for all
x ∈ E and 0 < r < diam(E) we have Fav(E ∩ B(x, r)) ≳ r. This
would immediately follow from the following:

Conjecture
Suppose E ⊂ [0, 1]2 is AD-regular. If Fav(E) ≳ 1, then there
exists a Lipschitz graph Γ with Lip(Γ) ≲ 1 and

H1(E ∩ Γ) ≳ 1.
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Questions

How does PBP relate to the “L2-projections” property of Chang-
Tolsa?
Theorem (Chang-Tolsa 2019)
Let I ⊂ [0, π) be an interval. If E ⊂ R2 is compact and it
supports a measure µ such that πθµ ∈ L2 for a.e. θ ∈ I, then
γ(E) > 0. More precisely,

γ(E) ≳ µ(E)2∫
I∥πθµ∥

2
L2 dθ

.
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Thank you!
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