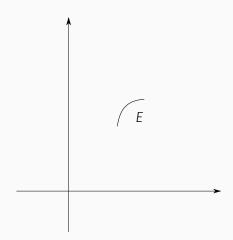
Vitushkin's conjecture and sets with plenty of big projections

Damian Dąbrowski

Based on joint work with Michele Villa

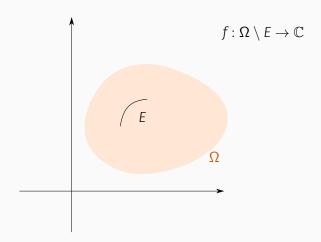
Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .



Removable sets

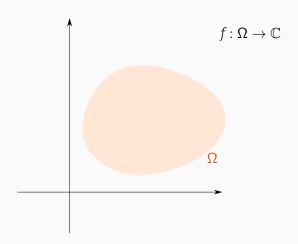
A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .



1

Removable sets

A compact set $E \subset \mathbb{C}$ is removable for bounded analytic functions if for any open $\Omega \subset \mathbb{C}$ containing E, each bounded analytic function $f: \Omega \setminus E \to \mathbb{C}$ has an analytic extension to Ω .



1

Analytic capacity

In 1947 Ahlfors characterized removability in terms of **analytic capacity**:

E is removable
$$\Leftrightarrow$$
 $\gamma(E) = 0$,

where

$$\gamma(E) = \sup\{|f'(\infty)| : f : \mathbb{C} \setminus E \to \mathbb{C} \text{ analytic}, \ ||f||_{\infty} \le 1\},$$
$$f'(\infty) = \lim_{z \to \infty} z(f(z) - f(\infty)).$$

Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E)=0$.

Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Facts:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If $dim_H(E) > 1$, then $\gamma(E) > 0$.

Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E)=0$.

Facts:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If $\dim_H(E) > 1$, then $\gamma(E) > 0$.
- If E is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E)=0$.

Facts:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If $dim_H(E) > 1$, then $\gamma(E) > 0$.
- If E is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Question

$$\gamma(E) = 0 \Leftrightarrow \mathcal{H}^1(E) = 0$$
?

3

Painlevé Problem

Find a geometric characterization of removable compact sets, i.e. compact sets with $\gamma(E) = 0$.

Facts:

- If $\mathcal{H}^1(E) = 0$, then $\gamma(E) = 0$.
- If $\dim_H(E) > 1$, then $\gamma(E) > 0$.
- If E is a segment, then $\gamma(E) = c \mathcal{H}^1(E)$.

Question

$$\gamma(E) = 0 \Leftrightarrow \mathcal{H}^1(E) = 0$$
? No!

There are sets $E \subset \mathbb{C}$ with $\gamma(E) = 0$ and $0 < \mathcal{H}^1(E) < \infty$. (Vitushkin 1959, Garnett, Ivanov 1970s)

Vitushkin's conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

$$\mathcal{H}^1(\pi_{\theta}(E)) = 0$$

for a.e. direction $\theta \in [0, \pi]$.

Vitushkin's conjecture

The sets constructed by Vitushkin, Garnett and Ivanov had very small projections. More precisely, they satisfied

$$\mathcal{H}^1(\pi_{\theta}(E)) = 0$$

for a.e. direction $\theta \in [0, \pi]$.

Define Favard length of E as

$$Fav(E) = \int_0^{\pi} \mathcal{H}^1(\pi_{\theta}(E)) d\theta.$$

Vitushkin's conjecture

$$\gamma(E) = 0 \Leftrightarrow Fav(E) = 0$$

Rectifiability

A set $E \subset \mathbb{R}^2$ is **rectifiable** if there exists a countable number of 1-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^1\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

Rectifiability

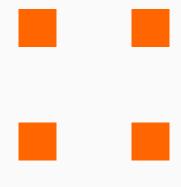
A set $E \subset \mathbb{R}^2$ is **rectifiable** if there exists a countable number of 1-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^1\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

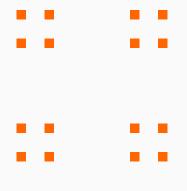
We say that $F \subset \mathbb{R}^2$ is **purely unrectifiable** if for every 1-dimensional Lipschitz graph Γ

$$\mathcal{H}^1(F\cap\Gamma)=0.$$

5



 K_1



 K_2

 K_3

$$K = \bigcap_n K_n$$

- an elementary argument gives $0 < \mathcal{H}^1(K) < \infty$ and Fav(K) = 0,
- $\gamma(K) = 0$ (Garnett, Ivanov 70s)

Theorem (Besicovitch 1939)

Let
$$E \subset \mathbb{R}^2$$
 with $0 < \mathcal{H}^1(E) < \infty$. Then

E is purely unrectifiable
$$\Leftrightarrow$$
 Fav(*E*) = 0.

Theorem (Besicovitch 1939)

Let
$$E \subset \mathbb{R}^2$$
 with $0 < \mathcal{H}^1(E) < \infty$. Then

E is purely unrectifiable
$$\Leftrightarrow$$
 Fav(E) = 0.

The implication " \Rightarrow " is false for sets with $\mathcal{H}^1(E) = \infty$! There exist purely unrectifiable sets with Fav > 0 (Falconer 80s).

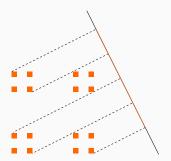
7

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. Then

E is purely unrectifiable \Leftrightarrow Fav(E) = 0.

The implication " \Rightarrow " is false for sets with $\mathcal{H}^1(E) = \infty$! There exist purely unrectifiable sets with Fav > 0 (Falconer 80s).

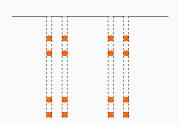


Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. Then

E is purely unrectifiable
$$\Leftrightarrow$$
 $Fav(E) = 0$.

The implication " \Rightarrow " is false for sets with $\mathcal{H}^1(E) = \infty$! There exist purely unrectifiable sets with Fav > 0 (Falconer 80s).



Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$\gamma(E) = 0 \Leftrightarrow Fav(E) = 0$$

In the case $\mathcal{H}^1(E) < \infty$ Vitushkin's conjecture is **true**! (Calderón '77, David '98)

Solution to Vitushkin's conjecture

Vitushkin's conjecture

$$\gamma(E) = 0 \Leftrightarrow Fav(E) = 0$$

In the case $\mathcal{H}^1(E)<\infty$ Vitushkin's conjecture is **true**! (Calderón '77, David '98)

In the case $\mathcal{H}^1(E) = \infty$, Vitushkin's conjecture is **false** (Mattila '86).

Open problems

Theorem (Jones-Murai '88)

There exists a set with Fav(E) = 0 and $\gamma(E) > 0$.

Open problems

Theorem (Jones-Murai '88)

There exists a set with Fav(E) = 0 and $\gamma(E) > 0$.

Problem 1 (qualitative)

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$
?

Open for sets $E \subset \mathbb{C}$ with $\dim_H(E) = 1$ and $\text{non-}\sigma\text{-finite}$ $\mathcal{H}^1\text{-measure}$.

Open problems

Theorem (Jones-Murai '88)

There exists a set with Fav(E) = 0 and $\gamma(E) > 0$.

Problem 1 (qualitative)

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$
?

Open for sets $E \subset \mathbb{C}$ with $\dim_H(E) = 1$ and non- σ -finite \mathcal{H}^1 -measure.

Problem 2 (quantitative)

$$\gamma(E) \gtrsim Fav(E)$$
?
 $\gamma(E) \gtrsim_{Fav(E)} 1$?

Open even in the case $\mathcal{H}^1(E) < \infty$.

What happens in the case $\mathcal{H}^1(E) < \infty$?

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$
?

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph Γ with

$$\mathcal{H}^1(E\cap\Gamma)>0.$$

What happens in the case $\mathcal{H}^1(E) < \infty$?

$$Fav(E) > 0 \Rightarrow \gamma(E) > 0$$
?

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph Γ with

$$\mathcal{H}^1(E\cap\Gamma)>0.$$

If
$$0 < \mathcal{H}^1(E) < \infty$$
 and $Fav(E) > 0$, we get

$$\gamma(E) \ge \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on '77)}}{>} 0.$$

If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem we get

$$\gamma(E) \ge \gamma(E \cap \Gamma) \overset{\text{(Calder\'on '77)}}{>} 0.$$

Problems:

If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem we get

$$\gamma(E) \geq \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on '77)}}{>} 0.$$

Problems:

1. The Besicovitch projection theorem fails for sets with $\mathcal{H}^1(E)=\infty!$

If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem we get

$$\gamma(E) \geq \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on '77)}}{>} 0.$$

Problems:

- 1. The Besicovitch projection theorem fails for sets with $\mathcal{H}^1(E) = \infty$!
- 2. There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an L-Lipschitz graph, then

$$\gamma(E \cap \Gamma) \gtrsim_{L} \mathcal{H}^{1}(E \cap \Gamma)...$$

If $0 < \mathcal{H}^1(E) < \infty$ and Fav(E) > 0, then by the Besicovitch projection theorem we get

$$\gamma(E) \geq \gamma(E \cap \Gamma) \stackrel{\text{(Calder\'on '77)}}{>} 0.$$

Problems:

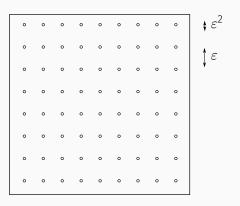
- 1. The Besicovitch projection theorem fails for sets with $\mathcal{H}^1(E) = \infty$!
- 2. There are estimates on $\gamma(E \cap \Gamma)$ depending on $\mathcal{H}^1(E \cap \Gamma)$, e.g. if Γ is an L-Lipschitz graph, then

$$\gamma(E \cap \Gamma) \gtrsim_{L} \mathcal{H}^{1}(E \cap \Gamma)...$$

...but the Besicovitch projection theorem gives no quantitative bound neither on $\mathcal{H}^1(E \cap \Gamma)$, nor on Lip(Γ)!

Quantifying Besicovitch projection theorem is hard

In fact, for any $\varepsilon > 0$ there exists a set $E = E(\varepsilon) \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $Fav(E) \gtrsim 1$ such that for all L-Lipschitz graphs Γ $\mathcal{H}^1(E \cap \Gamma) \lesssim L\varepsilon$.



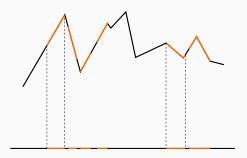
E consists of ε^{-2} uniformly distributed circles of radius ε^2 .

New results

Sets with plenty of big projections

We say that a set $E \subset \mathbb{R}^2$ has plenty of big projections (PBP) if there exists $\delta > 0$ such that for every $x \in E$ and 0 < r < diam(E) we have a direction $\theta_{x,r} \in [0,\pi)$ such that

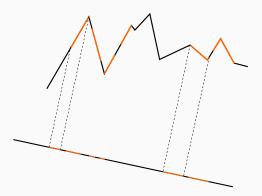
$$\mathcal{H}^1(\pi_{\theta}(E \cap B(x,r))) \ge \delta r$$
 for all $|\theta - \theta_{x,r}| < \delta$.



Sets with plenty of big projections

We say that a set $E \subset \mathbb{R}^2$ has plenty of big projections (PBP) if there exists $\delta > 0$ such that for every $x \in E$ and 0 < r < diam(E) we have a direction $\theta_{x,r} \in [0,\pi)$ such that

$$\mathcal{H}^1(\pi_{\theta}(E \cap B(x,r))) \ge \delta r$$
 for all $|\theta - \theta_{x,r}| < \delta$.



Sets with plenty of big projections

We say that a set $E \subset \mathbb{R}^2$ has plenty of big projections (PBP) if there exists $\delta > 0$ such that for every $x \in E$ and 0 < r < diam(E) we have a direction $\theta_{x,r} \in [0,\pi)$ such that

$$\mathcal{H}^1(\pi_{\theta}(E \cap B(x,r))) \ge \delta r$$
 for all $|\theta - \theta_{x,r}| < \delta$.

Theorem (D.-Villa)

If a compact set $E \subset \mathbb{R}^2$ has PBP, then

$$\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E)$$
.

An analogous result holds in higher dimension and codimension for capacities $\Gamma_{d,n}(E)$.

Two crucial blackboxes

For a set $E \subset \mathbb{R}^2$ let $\mathcal{F}(E)$ be the set of Radon measures satisfying:

• supp $\mu \subset E$,

For a set $E \subset \mathbb{R}^2$ let $\mathcal{F}(E)$ be the set of Radon measures satisfying:

- supp $\mu \subset E$,
- $\mu(B(x,r)) \leq r$,

For a set $E \subset \mathbb{R}^2$ let $\mathcal{F}(E)$ be the set of Radon measures satisfying:

- supp $\mu \subset E$,
- $\mu(B(x,r)) \leq r$,
- · a flatness condition

$$\iint \beta_{\mu,2}(x,r)^2 \, \frac{\mu(B(x,r))}{r} \, \frac{dr}{r} d\mu(x) \leq \mu(E).$$

For a set $E \subset \mathbb{R}^2$ let $\mathcal{F}(E)$ be the set of Radon measures satisfying:

- supp $\mu \subset E$,
- $\mu(B(x,r)) \leq r$,
- · a flatness condition

$$\iint \beta_{\mu,2}(x,r)^2 \, \frac{\mu(B(x,r))}{r} \, \frac{dr}{r} d\mu(x) \le \mu(E).$$

Examples:

- · $\mathcal{L}^2|_{[0,1]^2} \in \mathcal{F}([0,1]^2)$
- · $\mathcal{H}^1|_{\Gamma} \in \mathcal{F}(\Gamma)$ for any 1-Lipschitz graph Γ
- $\mathcal{F}(K) = \{0\}$ for the 4-corner Cantor set K

For a set $E \subset \mathbb{R}^2$ let $\mathcal{F}(E)$ be the set of Radon measures satisfying:

- supp $\mu \subset E$,
- $\mu(B(x,r)) \leq r$,
- · a flatness condition

$$\iint \beta_{\mu,2}(x,r)^2 \, \frac{\mu(B(x,r))}{r} \, \frac{dr}{r} d\mu(x) \le \mu(E).$$

Theorem (Tolsa 2005, Azzam-Tolsa 2015)

$$\gamma(E) \sim \sup\{\mu(E) : \mu \in \mathcal{F}(E)\}$$

Takeaway: to show $\gamma(E) > 0$, it suffices to find a non-zero $\mu \in \mathcal{F}(E)$.

We say that a set $E \subset \mathbb{R}^2$ is AD-regular if for any $x \in E$ and 0 < r < diam(E) we have

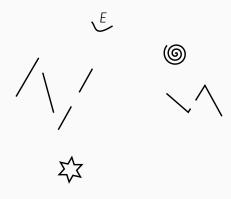
$$C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$$

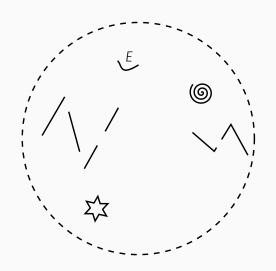
We say that a set $E \subset \mathbb{R}^2$ is AD-regular if for any $x \in E$ and 0 < r < diam(E) we have

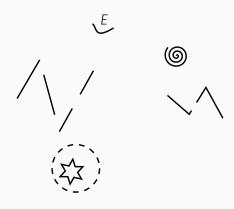
$$C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$$

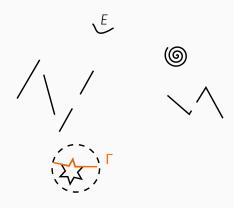
An AD-regular set E contains big pieces of Lipschitz graphs (BPLG) if there exist C, L > 0 such that for every $x \in E$ and every 0 < r < diam(E) there exists an L-Lipschitz graph $\Gamma = \Gamma_{x,r}$ with

$$\mathcal{H}^1(E \cap \Gamma \cap B(x,r)) \geq Cr.$$









PBP and quantitative rectifiability

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph Γ with

$$\mathcal{H}^1(E\cap\Gamma)>0.$$

PBP and quantitative rectifiability

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If Fav(E) > 0, then there exists a Lipschitz graph Γ with

$$\mathcal{H}^1(E\cap\Gamma)>0.$$

Theorem (Orponen 2021)

Let *E* be AD-regular. If *E* has PBP, then it contains big pieces of Lipschitz graphs.

PBP and quantitative rectifiability

Theorem (David-Semmes 1991)

If E is AD-regular and has BPLG, then $\mu=\mathcal{H}^1|_{\mathsf{E}}$ satisfies

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \lesssim \mu(E),$$

i.e. $\mu \in \mathcal{F}(E)$.

Corollary

If E is AD-regular and has PBP, then $\mu=\mathcal{H}^1|_E$ satisfies

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \lesssim \mu(E).$$

The proof

Theorem (D.-Villa)

If a compact set $E \subset \mathbb{R}^2$ has PBP, then

$$\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E)$$
.

Plan:

1. Take the usual Frostman measure μ on E. We'll show $\mu \in \mathcal{F}(E)$.

Theorem (D.-Villa)

If a compact set $E \subset \mathbb{R}^2$ has PBP, then

$$\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E)$$
.

Plan:

- 1. Take the usual Frostman measure μ on E. We'll show $\mu \in \mathcal{F}(E)$.
- 2. Multi-scale approximation of μ by a family of AD-regular measures $\{\eta_R\}_{R\in \text{Roots}}$ (corona decomposition).

Theorem (D.-Villa)

If a compact set $E \subset \mathbb{R}^2$ has PBP, then

$$\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E)$$
.

Plan:

- 1. Take the usual Frostman measure μ on E. We'll show $\mu \in \mathcal{F}(E)$.
- 2. Multi-scale approximation of μ by a family of AD-regular measures $\{\eta_R\}_{R\in \text{Roots}}$ (corona decomposition).
- 3. Each η_R has PBP; apply Orponen's result to get an estimate on $\beta_{\eta_R,2}$.

Theorem (D.-Villa)

If a compact set $E \subset \mathbb{R}^2$ has PBP, then

$$\gamma(E) \gtrsim_{\delta} \operatorname{diam}(E)$$
.

Plan:

- 1. Take the usual Frostman measure μ on E. We'll show $\mu \in \mathcal{F}(E)$.
- 2. Multi-scale approximation of μ by a family of AD-regular measures $\{\eta_R\}_{R\in \text{Roots}}$ (corona decomposition).
- 3. Each η_R has PBP; apply Orponen's result to get an estimate on $\beta_{\eta_R,2}$.
- 4. Transfer the estimates to $\beta_{\mu,2}$ to conclude $\mu \in \mathcal{F}(E)$.

Step 1. Frostman measure

Let $E \subset \mathbb{R}^2$ be a compact set with PBP. Our goal is to find a non-zero measure $\mu \in \mathcal{F}(E)$, i.e. a measure μ supported on E satisfying $\mu(B(x,r)) \leq r$ and

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \leq \mu(E).$$

Step 1. Frostman measure

Let $E \subset \mathbb{R}^2$ be a compact set with PBP. Our goal is to find a non-zero measure $\mu \in \mathcal{F}(E)$, i.e. a measure μ supported on E satisfying $\mu(B(x,r)) \leq r$ and

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \leq \mu(E).$$

Frostman's Lemma

Given a compact set $E \subset \mathbb{R}^2$ there exists a measure μ supported on E such that $\mu(E) \sim \mathcal{H}^1_\infty(E)$ and

$$\mu(B(x,r)) \leq r.$$

Step 1. Frostman measure

Let $E \subset \mathbb{R}^2$ be a compact set with PBP. Our goal is to find a non-zero measure $\mu \in \mathcal{F}(E)$, i.e. a measure μ supported on E satisfying $\mu(B(x,r)) \leq r$ and

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \leq \mu(E).$$

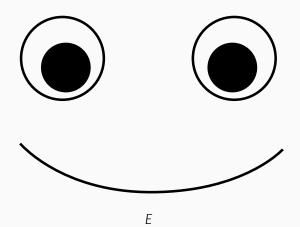
Frostman's Lemma

Given a compact set $E \subset \mathbb{R}^2$ there exists a measure μ supported on E such that $\mu(E) \sim \mathcal{H}^1_\infty(E)$ and

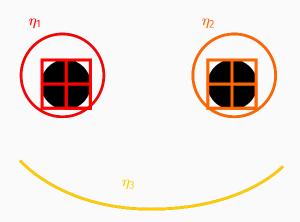
$$\mu(B(x,r)) \leq r.$$

Warning: It is **not** true that for any η with supp $\eta \subset E$ and linear growth we have $\eta \in \mathcal{F}(E)$!

We perform a multi-scale approximation of the Frostman measure μ by a family of AD-regular measures $\{\eta_R\}_{R \in \text{Roots}}$.



We perform a multi-scale approximation of the Frostman measure μ by a family of AD-regular measures $\{\eta_R\}_{R \in \text{Roots}}$.



We perform a multi-scale approximation of the Frostman measure μ by a family of AD-regular measures $\{\eta_R\}_{R\in Roots}$.

We perform a multi-scale approximation of the Frostman measure μ by a family of AD-regular measures $\{\eta_R\}_{R \in \text{Roots}}$.

In technical terms:

- We decompose the David-Christ lattice \mathcal{D} into a family of trees $\{\mathcal{T}(R)\}_{R\in \mathsf{Roots}}$ such that μ "is AD-regular in each $\mathcal{T}(R)$."
- To do that, we conduct a stopping time argument involving a single condition:

$$Q \in LD(R) \quad \Leftrightarrow \quad \frac{\mu(Q)}{\ell(Q)} \leq 0.1 \frac{\mu(R)}{\ell(R)}.$$

• We construct an approximating measure η_R for each $\mathcal{T}(R)$.

Steps 3 and 4. Approximating measures are flat

Each η_R inherits the PBP property from the set E. Since η_R are AD-regular, we get from Orponen's result

$$\iint \beta_{\eta_R,2}(x,r)^2 \frac{\eta_R(B(x,r))}{r} \frac{dr}{r} d\eta_R(x) \lesssim \eta_R(E).$$

Steps 3 and 4. Approximating measures are flat

Each η_R inherits the PBP property from the set E. Since η_R are AD-regular, we get from Orponen's result

$$\iint \beta_{\eta_R,2}(x,r)^2 \frac{\eta_R(B(x,r))}{r} \frac{dr}{r} d\eta_R(x) \lesssim \eta_R(E).$$

Summing over all $R \in \text{Roots}$ and using the fact that η_R approximate μ quite well, one can derive

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \lesssim \sum_{R \in \text{Roots}} \left(\frac{\mu(R)}{\ell(R)}\right)^2 \mu(R)$$
$$\lesssim \mu(E).$$

Hence, $\mu \in \mathcal{F}(\mathit{E})$ and by the Azzam-Tolsa result

$$\gamma(E) \gtrsim \mu(E) \sim \mathcal{H}_{\infty}^{1}(E) \sim \text{diam}(E).$$

Steps 3 and 4. Approximating measures are flat

Each η_R inherits the PBP property from the set E. Since η_R are AD-regular, we get from Orponen's result

$$\iint \beta_{\eta_R,2}(x,r)^2 \frac{\eta_R(B(x,r))}{r} \frac{dr}{r} d\eta_R(x) \lesssim \eta_R(E).$$

Summing over all $R \in \text{Roots}$ and using the fact that η_R approximate μ quite well, one can derive

$$\iint \beta_{\mu,2}(x,r)^2 \frac{\mu(B(x,r))}{r} \frac{dr}{r} d\mu(x) \lesssim \sum_{R \in \text{Roots}} \left(\frac{\mu(R)}{\ell(R)}\right)^2 \mu(R)$$
$$\lesssim \mu(E).$$

Hence, $\mu \in \mathcal{F}(\mathit{E})$ and by the Azzam-Tolsa result

$$\gamma(E) \gtrsim \mu(E) \sim \mathcal{H}^1_{\infty}(E) \sim \text{diam}(E).$$

Questions

Can we replace PBP by "uniformly large Favard length": for all $x \in E$ and 0 < r < diam(E) we have $Fav(E \cap B(x,r)) \gtrsim r$. This would immediately follow from the following:

Conjecture

Suppose $E \subset [0,1]^2$ is AD-regular. If $Fav(E) \gtrsim 1$, then there exists a Lipschitz graph Γ with $Lip(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim 1.$$

Questions

How does PBP relate to the " L^2 -projections" property of Chang-Tolsa?

Theorem (Chang-Tolsa 2019)

Let $I \subset [0,\pi)$ be an interval. If $E \subset \mathbb{R}^2$ is compact and it supports a measure μ such that $\pi_{\theta}\mu \in L^2$ for a.e. $\theta \in I$, then $\gamma(E) > 0$. More precisely,

$$\gamma(E) \gtrsim \frac{\mu(E)^2}{\int_I \|\pi_\theta \mu\|_{L^2}^2 d\theta}.$$

Thank you!