Quantifying Besicovitch projection theorem

Damian Dąbrowski

Rectifiability

A set $E \subset \mathbb{R}^2$ is **rectifiable** if there exists a countable number of 1-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^1\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

Rectifiability

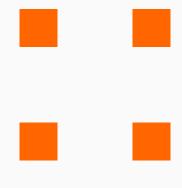
A set $E \subset \mathbb{R}^2$ is **rectifiable** if there exists a countable number of 1-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^1\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

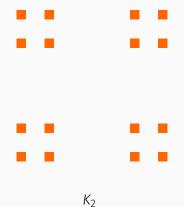
We say that $F \subset \mathbb{R}^2$ is **purely unrectifiable** if for every 1-dimensional Lipschitz graph Γ

$$\mathcal{H}^1(F\cap\Gamma)=0.$$

1



 K_1



```
K_3
```

$$K = \bigcap_n K_n$$

$$K = \bigcap_n K_n$$

Fact

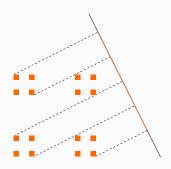
Any set E with $0 < \mathcal{H}^1(E) < \infty$ can be decomposed $E = R \cup U$ with R rectifiable and U purely unrectifiable.

Projections and rectifiability

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. Then, E is purely unrectifiable if and only if

$$\mathcal{H}^1(\pi_{\theta}(E)) = 0$$
 for a.e. $\theta \in (0, \pi)$.

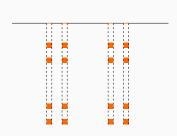


Projections and rectifiability

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. Then, E is purely unrectifiable if and only if

$$\mathcal{H}^1(\pi_{\theta}(E)) = 0$$
 for a.e. $\theta \in (0, \pi)$.



Projections and rectifiability

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. Then, E is purely unrectifiable if and only if

$$\mathcal{H}^1(\pi_{\theta}(E)) = 0$$
 for a.e. $\theta \in (0, \pi)$.

We are interested in quantifying this result.

Previously studied by Mattila, David, Semmes, Tao, Łaba, Zhai, Bateman, Volberg, Bond, Zahl, Nazarov, Wilson, Martikainen, Orponen, Bongers, Taylor, Marshall, Zhang, Vardakis.

3

Quantifying Besicovitch's theorem

Define Favard length of E as

$$\mathsf{Fav}(E) = \int_0^\pi \mathcal{H}^1(\pi_\theta(E)) \ d\theta.$$

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with

$$\mathcal{H}^1(E\cap\Gamma)>0.$$

Quantifying Besicovitch's theorem

Define Favard length of E as

$$\mathsf{Fav}(E) = \int_0^\pi \mathcal{H}^1(\pi_\theta(E)) \ d\theta.$$

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with

$$\mathcal{H}^1(E \cap \Gamma) > 0.$$

Problem

Can we quantify the dependence of $Lip(\Gamma)$ and $\mathcal{H}^1(E \cap \Gamma)$ on Fav(E)?

Why is this interesting?

- fits into the framework of the quantitative rectifiability field, connections to PDEs and SIOs
- seems necessary for the solution of Vitushkin's conjecture

Naive conjecture...

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^2$ with $0 < \mathcal{H}^1(E) < \infty$. If $\mathsf{Fav}(E) > 0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with

$$\mathcal{H}^1(E\cap\Gamma)>0.$$

Naive conjecture

Let $E \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $\mathsf{Fav}(E) \gtrsim 1$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

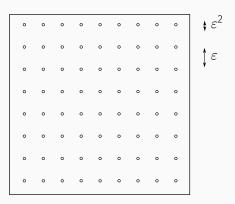
$$\mathcal{H}^1(E\cap\Gamma)\gtrsim 1.$$

6

... is false

For any $\varepsilon > 0$ there exists a set $E = E_{\varepsilon} \subset [0,1]^2$ with $\mathcal{H}^1(E) \sim 1$ and $\mathsf{Fav}(E) \gtrsim 1$ such that for all L-Lipschitz graphs Γ

$$\mathcal{H}^1(E\cap\Gamma)\lesssim L\varepsilon.$$



E consists of ε^{-2} uniformly distributed circles of radius ε^2 .

Reasonable conjecture

We say that a set $E \subset \mathbb{R}^2$ is Ahlfors regular if for any $x \in E$ and 0 < r < diam(E) we have

$$C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$$

Reasonable conjecture

We say that a set $E \subset \mathbb{R}^2$ is Ahlfors regular if for any $x \in E$ and 0 < r < diam(E) we have

$$C^{-1}r \leq \mathcal{H}^1(E \cap B(x,r)) \leq Cr.$$

Conjecture

Let $E \subset [0,1]^2$ be an Ahlfors regular set with $\mathcal{H}^1(E) \sim 1$ and $\mathsf{Fav}(E) \gtrsim 1$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\text{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E \cap \Gamma) \gtrsim 1$$
.

Previous results

Conjecture

Let $E \subset [0,1]^2$ be an Ahlfors regular set with $\mathcal{H}^1(E) \sim 1$ and $\mathsf{Fav}(E) \gtrsim 1$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\text{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E \cap \Gamma) \gtrsim 1.$$

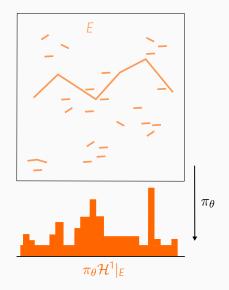
Significant progress towards the conjecture due to:

- · Orponen 2021: sets with "plenty of big projections,"
- Martikainen-Orponen 2018: sets with projections in L^2 .

Sets with projections in L^2

Big projections vs projections in L^p

Denote by $\pi_{\theta}\mathcal{H}^1|_{\mathcal{E}}$ the pushforward of $\mathcal{H}^1|_{\mathcal{E}}$ by π_{θ} .



Big projections vs projections in L^p

Denote by $\pi_{\theta}\mathcal{H}^1|_E$ the pushforward of $\mathcal{H}^1|_E$ by π_{θ} .

Observation

If $\pi_{\theta} \mathcal{H}^1|_{E} \in L^p$ for some p > 1, then

$$\mathcal{H}^1(\pi_{\theta}(E)) \gtrsim \frac{\mathcal{H}^1(E)^{p'}}{\|\pi_{\theta}\mathcal{H}^1|_E\|_p^{p'}}.$$

Indeed:

$$\mathcal{H}^{1}(E) = \int_{\pi_{\theta}(E)} \pi_{\theta} \mathcal{H}^{1}|_{E}(x) dx$$

$$\leq \left(\int \pi_{\theta} \mathcal{H}^{1}|_{E}(x)^{p} dx \right)^{1/p} \mathcal{H}^{1}(\pi_{\theta}(E))^{1/p'}.$$

Sets with projections in L^2

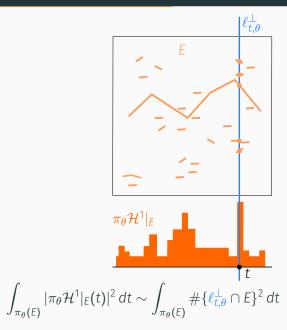
Theorem (Martikainen-Orponen 2018)

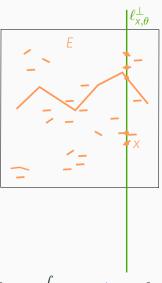
Let $E \subset [0,1]^2$ be an Ahlfors regular set with $\mathcal{H}^1(E) \sim 1$. Suppose that there exists an arc $G \subset \mathbb{S}^1$ with $\mathcal{H}^1(G) \gtrsim 1$ and such that

$$\int_G \|\pi_\theta \mathcal{H}^1|_E\|_{L^2}^2 d\theta \lesssim 1.$$

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\text{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E \cap \Gamma) \gtrsim 1.$$





$$\int_{\pi_{\theta}(E)} |\pi_{\theta} \mathcal{H}^1|_E(t)|^2 dt \sim \int_{\pi_{\theta}(E)} \#\{\ell_{t,\theta}^{\perp} \cap E\}^2 dt \sim \int_E \#\{\ell_{x,\theta}^{\perp} \cap E\} dx.$$

$$\|\pi_{\theta}\mathcal{H}^1|_{\mathcal{E}}\|_{L^2}^2 \sim \int_{\mathcal{E}} \#\{\ell_{x,\theta}^{\perp} \cap \mathcal{E}\} dx$$

$$\int_G \|\pi_\theta \mathcal{H}^1|_E\|_{L^2}^2 d\theta \sim \int_G \int_E \#\{\ell_{x,\theta}^\perp \cap E\} dx d\theta$$

$$\int_{G} \|\pi_{\theta} \mathcal{H}^{1}|_{E}\|_{L^{2}}^{2} d\theta \sim \int_{G} \int_{E} \#\{\ell_{x,\theta}^{\perp} \cap E\} dx d\theta$$

$$= \int_{E} \int_{G} \#\{\ell_{x,\theta}^{\perp} \cap E\} d\theta dx$$

$$X(x,G) = \bigcup_{\theta \in G} \ell_{x,\theta}^{\perp}$$

$$\int_{G} \|\pi_{\theta} \mathcal{H}^{1}|_{E}\|_{L^{2}}^{2} d\theta \sim \int_{G} \int_{E} \#\{\ell_{x,\theta}^{\perp} \cap E\} dx d\theta$$

$$= \int_{E} \int_{G} \#\{\ell_{x,\theta}^{\perp} \cap E\} d\theta dx$$

$$\sim \int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx.$$

$$X(x,G) = \bigcup_{\theta \in G} \ell_{x,\theta}^{\perp}$$

$$X(x,G,r) = X(x,G) \cap B(x,r)$$

In fact, one can use Fourier analysis to show:

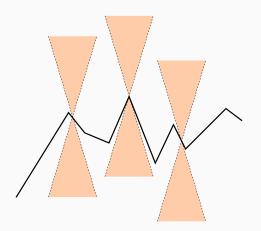
Theorem (Chang-Tolsa 2020)

Let μ be a finite, compactly supported measure on \mathbb{R}^2 , and $G \subset \mathbb{S}^1$ an open set. Then,

$$\iint_0^\infty \frac{\mu(X(x,G,r))}{r} \frac{dr}{r} d\mu(x) \lesssim \int_G \|\pi_\theta \mu\|_{L^2}^2 d\theta.$$

Recall: $E \subset \mathbb{R}^2$ is a subset of a Lipschitz graph iff there exists an open cone X such that

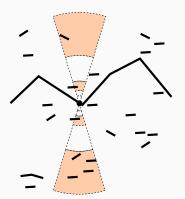
$$x \in E \implies E \cap X(x) = \varnothing.$$



In our setting, the estimate

$$\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx \lesssim 1$$

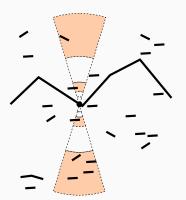
$$\#\big\{j\in\mathbb{Z}\ :\ E\cap X\big(x,G,2^{-j-1},2^{-j}\big)\neq\varnothing\big\}\lesssim 1.$$



In our setting, the estimate

$$\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx \lesssim 1$$

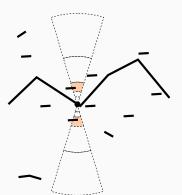
$$\#\{j \in \mathbb{Z} : E \cap X(x, G, 2^{-j-1}, 2^{-j}) \neq \varnothing\} \le M.$$



In our setting, the estimate

$$\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx \lesssim 1$$

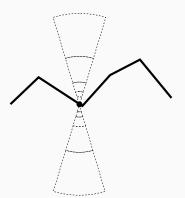
$$\#\{j \in \mathbb{Z} : E \cap X(x, G, 2^{-j-1}, 2^{-j}) \neq \varnothing\} \le M-1.$$



In our setting, the estimate

$$\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx \lesssim 1$$

$$\#\{j \in \mathbb{Z} : E \cap X(x, G, 2^{-j-1}, 2^{-j}) \neq \varnothing\} = 0.$$



New result

Sets with projections in L^{∞}

Theorem (D. 2022)

Let $E \subset [0,1]^2$ be an Ahlfors regular set with $\mathcal{H}^1(E) \sim 1$. Suppose that there exists a measurable $G \subset \mathbb{S}^1$ with $\mathcal{H}^1(G) \gtrsim 1$ and such that

$$\|\pi_{\theta}\mathcal{H}^1|_E\|_{L^{\infty}}\lesssim 1$$
 for $\theta\in G$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\text{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim 1.$$

Sets with projections in L^{∞}

Theorem (D. 2022)

Let $E \subset [0,1]^2$ be an Ahlfors regular set with $\mathcal{H}^1(E) \sim 1$. Suppose that there exists a measurable $G \subset \mathbb{S}^1$ with $\mathcal{H}^1(G) \gtrsim 1$ and such that

$$\|\pi_{\theta}\mathcal{H}^1|_E\|_{L^{\infty}}\lesssim 1$$
 for $\theta\in G$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\text{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim 1.$$

Why is this significant?

Conjecture

Let $E \subset [0,1]^2$ be an Ahlfors regular set with $\mathcal{H}^1(E) \sim 1$ and $\mathsf{Fav}(E) \gtrsim 1$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\text{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim 1.$$

Note that $Fav(E) \gtrsim 1$ if and only if there exists a measurable $G \subset \mathbb{S}^1$ with $\mathcal{H}^1(G) \gtrsim 1$ such that

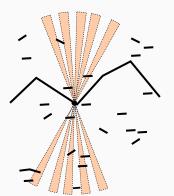
$$\mathcal{H}^1(\pi_{\theta}(E)) \gtrsim 1$$
 for $\theta \in G$.

Difficulty 1. We can still get the estimate

$$\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx \lesssim 1,$$

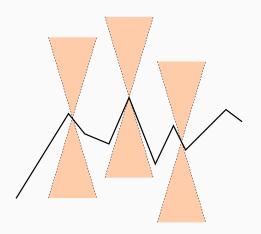
but now we cannot transform it to

$$\left\{j\in\mathbb{Z}\ :\ E\cap X(x,G,2^{-j-1},2^{-j})\neq\varnothing\right\}\lesssim 1.$$

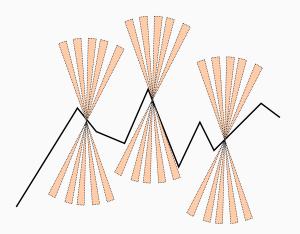


Recall: $E \subset \mathbb{R}^2$ is a subset of a Lipschitz graph iff there exists an open cone X such that

$$x \in E \implies E \cap X(x) = \varnothing.$$



Difficulty 2. We are missing a characterization of Lipschitz graphs in terms of the "irregular, star-shaped" cones.



Difficulty 2. We are missing a characterization of Lipschitz graphs in terms of the "irregular, star-shaped" cones.

Question

Suppose that $E \subset [0,1]^2$ is Ahlfors regular with $\mathcal{H}^1(E) \sim 1$, and satisfies

$$x \in E \implies E \cap X(x,G) = \emptyset$$

for some $G \subset \mathbb{S}^1$ with $\mathcal{H}^1(G) \gtrsim 1$.

- Is E rectifiable?
- · Is there a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim 1?$$

About the proof

Idea of the proof

Theorem (D. 2022)

Let $E \subset [0,1]^2$ be an Ahlfors regular set with $\mathcal{H}^1(E) \sim 1$. Suppose that there exists a measurable $G \subset \mathbb{S}^1$ with $\mathcal{H}^1(G) \gtrsim 1$ and such that

$$\|\pi_{\theta}\mathcal{H}^1|_E\|_{L^{\infty}}\lesssim 1$$
 for $\theta\in G$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\text{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E\cap\Gamma)\gtrsim 1.$$

Idea of the proof

We know that

$$\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx \lesssim 1.$$

Idea of the proof

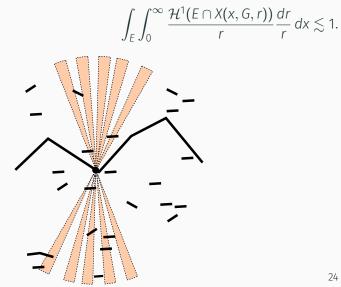
We know that

$$\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx \lesssim 1.$$

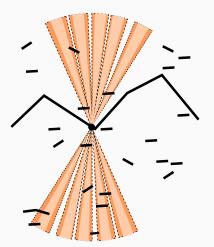
We prove that there exists an arc $J \subset \mathbb{S}^1$ with $\mathcal{H}^1(J) \sim 1$ such that

$$\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,J,r))}{r} \frac{dr}{r} dx \lesssim 1.$$

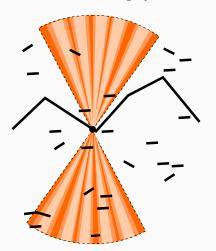
Then, we can use the result of Martikainen-Orponen to find the desired big piece of a Lipschitz graph.



$$\int_{F} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G',r))}{r} \frac{dr}{r} dx \lesssim \int_{F} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx \lesssim 1.$$



$$\int_{F} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G',r))}{r} \frac{dr}{r} dx \lesssim \int_{F} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x,G,r))}{r} \frac{dr}{r} dx \lesssim 1.$$



Main propositon

Suppose that

• $E \subset [0,1]^2$ is an Ahlors regular set with $\mathcal{H}^1(E) \sim 1$,

Main propositon

Suppose that

- $E \subset [0,1]^2$ is an Ahlors regular set with $\mathcal{H}^1(E) \sim 1$,
- $J \subset \mathbb{S}^1$ is an arc, and $G_J \subset J$ is measurable with $\mathcal{H}^1(J \setminus G_J) \leq \varepsilon \mathcal{H}^1(J)$,

Main propositon

Suppose that

- $E \subset [0,1]^2$ is an Ahlors regular set with $\mathcal{H}^1(E) \sim 1$,
- $J \subset \mathbb{S}^1$ is an arc, and $G_J \subset J$ is measurable with $\mathcal{H}^1(J \setminus G_J) \leq \varepsilon \mathcal{H}^1(J)$,
- technical assumptions involving $\|\pi_{\theta}\mathcal{H}^1|_{\mathcal{E}}\|_{\infty}$.

Main propositon

Suppose that

- $E \subset [0,1]^2$ is an Ahlors regular set with $\mathcal{H}^1(E) \sim 1$,
- $J \subset \mathbb{S}^1$ is an arc, and $G_J \subset J$ is measurable with $\mathcal{H}^1(J \setminus G_J) \leq \varepsilon \mathcal{H}^1(J)$,
- technical assumptions involving $\|\pi_{\theta}\mathcal{H}^1|_{\mathcal{E}}\|_{\infty}$.

Then,

$$\int_{E} \int_{0}^{1} \frac{\mathcal{H}^{1}(E \cap X(x,3J,r))}{r} \frac{dr}{r} d\mathcal{H}^{1}(x)$$

$$\lesssim \int_{E} \int_{0}^{1} \frac{\mathcal{H}^{1}(E \cap X(x,G_{J},r))}{r} \frac{dr}{r} d\mathcal{H}^{1}(x) + \mathcal{H}^{1}(J).$$

Questions

Questions

Can we relax the L^{∞} -assumption to the L^2 -assumptions?

Question 1

Let $E \subset [0,1]^2$ be an Ahlfors regular set with $\mathcal{H}^1(E) \sim 1$. Suppose that there exists a measurable $G \subset \mathbb{S}^1$ with $\mathcal{H}^1(G) \gtrsim 1$ and such that

$$\|\pi_{\theta}\mathcal{H}^1|_E\|_{L^2}\lesssim 1$$
 for $\theta\in G$.

Does there exist a Lipschitz graph $\Gamma \subset \mathbb{R}^2$ with $\mathsf{Lip}(\Gamma) \lesssim 1$ and

$$\mathcal{H}^1(E \cap \Gamma) \gtrsim 1$$
?

Questions

Can a similar approach be used to prove the full conjecture?

Question 2

Suppose that $E \subset [0,1]^2$ is an Ahflors regular set with $\mathcal{H}^1(E)=1$. Does there exist $\varepsilon>0$ and $\delta_0>0$ such that, if

- $J \subset \mathbb{S}^1$ is an arc with $\mathcal{H}^1(J) \leq \delta_0$, and $G_J \subset J$ is measurable with $\mathcal{H}^1(J \setminus G_J) \leq \varepsilon \, \mathcal{H}^1(J)$,
- for some $\delta_0^{-1}\mathcal{H}^1(J) \leq C \leq 1$

$$\mathcal{H}^1(\pi_{\theta}(E)) \geq C \quad \text{for } \theta \in G_J,$$

then

$$\mathcal{H}^1(\pi_{\theta}(E)) \gtrsim_{\mathcal{C}} 1$$
 for $\theta \in 3J$?

Thank you!