Quantifying Besicovitch projection theorem

Damian Dąbrowski

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Rectifiability

A set $E \subset \mathbb{R}^{2}$ is rectifiable if there exists a countable number of 1-dimensional Lipschitz graphs Γ_{i} such that

$$
\mathcal{H}^{1}\left(E \backslash \bigcup_{i} \Gamma_{i}\right)=0 .
$$

Rectifiability

A set $E \subset \mathbb{R}^{2}$ is rectifiable if there exists a countable number of 1-dimensional Lipschitz graphs Γ_{i} such that

$$
\mathcal{H}^{1}\left(E \backslash \bigcup_{i} \Gamma_{i}\right)=0 .
$$

We say that $F \subset \mathbb{R}^{2}$ is purely unrectifiable if for every 1-dimensional Lipschitz graph 「

$$
\mathcal{H}^{1}(F \cap \Gamma)=0 .
$$

Four-corner Cantor set

K_{1}

Four-corner Cantor set

Four-corner Cantor set

K_{3}

Four-corner Cantor set

$\begin{array}{ll}\text { ■ } \\ \square & \square \\ \square\end{array}$
$\begin{array}{cc}\text { ■■ ■ ■ } \\ \text { ■ ■ } & \text { ■ }\end{array}$
$\begin{aligned} & \square \\ & \square \square \\ & \square\end{aligned}$
$K=\bigcap_{n} K_{n}$

Four-corner Cantor set

Fact
Any set E with $0<\mathcal{H}^{1}(E)<\infty$ can be decomposed $E=R \cup U$ with R rectifiable and U purely unrectifiable.

Projections and rectifiability

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^{2}$ with $0<\mathcal{H}^{1}(E)<\infty$. Then, E is purely unrectifiable if and only if

$$
\mathcal{H}^{1}\left(\pi_{\theta}(E)\right)=0 \quad \text { for a.e. } \theta \in(0, \pi)
$$

Projections and rectifiability

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^{2}$ with $0<\mathcal{H}^{1}(E)<\infty$. Then, E is purely unrectifiable if and only if

$$
\mathcal{H}^{1}\left(\pi_{\theta}(E)\right)=0 \quad \text { for a.e. } \theta \in(0, \pi)
$$

Projections and rectifiability

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^{2}$ with $0<\mathcal{H}^{1}(E)<\infty$. Then, E is purely unrectifiable if and only if

$$
\mathcal{H}^{1}\left(\pi_{\theta}(E)\right)=0 \quad \text { for a.e. } \theta \in(0, \pi)
$$

We are interested in quantifying this result.
Previously studied by Mattila, David, Semmes, Tao, Łaba, Zhai, Bateman, Volberg, Bond, Zahl, Nazarov, Wilson, Martikainen, Orponen, Bongers, Taylor, Marshall, Zhang, Vardakis.

Quantifying Besicovitch's theorem

Define Favard length of E as

$$
\operatorname{Fav}(E)=\int_{0}^{\pi} \mathcal{H}^{1}\left(\pi_{\theta}(E)\right) d \theta
$$

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^{2}$ with $0<\mathcal{H}^{1}(E)<\infty$. If $\operatorname{Fav}(E)>0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with

$$
\mathcal{H}^{1}(E \cap \Gamma)>0
$$

Quantifying Besicovitch's theorem

Define Favard length of E as

$$
\operatorname{Fav}(E)=\int_{0}^{\pi} \mathcal{H}^{1}\left(\pi_{\theta}(E)\right) d \theta
$$

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^{2}$ with $0<\mathcal{H}^{1}(E)<\infty$. If $\operatorname{Fav}(E)>0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with

$$
\mathcal{H}^{1}(E \cap \Gamma)>0 .
$$

Problem

Can we quantify the dependence of $\operatorname{Lip}(\Gamma)$ and $\mathcal{H}^{1}(E \cap \Gamma)$ on $\operatorname{Fav}(E)$?

Why is this interesting?

- fits into the framework of the quantitative rectifiability field, connections to PDEs and SIOs
- seems necessary for the solution of Vitushkin's conjecture

Naive conjecture...

Theorem (Besicovitch 1939)

Let $E \subset \mathbb{R}^{2}$ with $0<\mathcal{H}^{1}(E)<\infty$. If $\operatorname{Fav}(E)>0$, then there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with

$$
\mathcal{H}^{1}(E \cap \Gamma)>0 .
$$

Naive conjecture

Let $E \subset[0,1]^{2}$ with $\mathcal{H}^{1}(E) \sim 1$ and $\operatorname{Fav}(E) \gtrsim 1$. Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with $\operatorname{Lip}(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 .
$$

... is false

For any $\varepsilon>0$ there exists a set $E=E_{\varepsilon} \subset[0,1]^{2}$ with $\mathcal{H}^{1}(E) \sim 1$ and $\operatorname{Fav}(E) \gtrsim 1$ such that for all L-Lipschitz graphs Γ

$$
\mathcal{H}^{1}(E \cap \Gamma) \lesssim L \varepsilon
$$

E consists of ε^{-2} uniformly distributed circles of radius ε^{2}.

Reasonable conjecture

We say that a set $E \subset \mathbb{R}^{2}$ is Ahlfors regular if for any $x \in E$ and $0<r<\operatorname{diam}(E)$ we have

$$
C^{-1} r \leq \mathcal{H}^{1}(E \cap B(x, r)) \leq C r .
$$

Reasonable conjecture

We say that a set $E \subset \mathbb{R}^{2}$ is Ahlfors regular if for any $x \in E$ and $0<r<\operatorname{diam}(E)$ we have

$$
C^{-1} r \leq \mathcal{H}^{1}(E \cap B(x, r)) \leq C r .
$$

Conjecture

Let $E \subset[0,1]^{2}$ be an Ahlfors regular set with $\mathcal{H}^{1}(E) \sim 1$ and $\operatorname{Fav}(E) \gtrsim 1$.
Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with $\operatorname{Lip}(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 .
$$

Previous results

Conjecture

Let $E \subset[0,1]^{2}$ be an Ahlfors regular set with $\mathcal{H}^{1}(E) \sim 1$ and $\operatorname{Fav}(E) \gtrsim 1$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with $\operatorname{Lip}(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 .
$$

Significant progress towards the conjecture due to:

- Orponen 2021: sets with "plenty of big projections,"
- Martikainen-Orponen 2018: sets with projections in L².

Sets with projections in L^{2}

Big projections vs projections in L^{p}

Denote by $\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}$ the pushforward of $\left.\mathcal{H}^{1}\right|_{E}$ by π_{θ}.

Big projections vs projections in L^{p}

Denote by $\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}$ the pushforward of $\left.\mathcal{H}^{1}\right|_{E}$ by π_{θ}.

Observation

If $\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E} \in L^{p}$ for some $p>1$, then

$$
\mathcal{H}^{1}\left(\pi_{\theta}(E)\right) \gtrsim \frac{\mathcal{H}^{1}(E)^{p^{\prime}}}{\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{p}^{p^{\prime}}}
$$

Indeed:

$$
\begin{aligned}
& \mathcal{H}^{1}(E)=\left.\int_{\pi_{\theta}(E)} \pi_{\theta} \mathcal{H}^{1}\right|_{E}(x) d x \\
& \leq\left(\left.\int \pi_{\theta} \mathcal{H}^{1}\right|_{E}(x)^{p} d x\right)^{1 / p} \mathcal{H}^{1}\left(\pi_{\theta}(E)\right)^{1 / p^{\prime}}
\end{aligned}
$$

Sets with projections in L^{2}

Theorem (Martikainen-Orponen 2018)

Let $E \subset[0,1]^{2}$ be an Ahlfors regular set with $\mathcal{H}^{1}(E) \sim 1$. Suppose that there exists an $\operatorname{arc} G \subset \mathbb{S}^{1}$ with $\mathcal{H}^{1}(G) \gtrsim 1$ and such that

$$
\int_{G}\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{L^{2}}^{2} d \theta \lesssim 1 .
$$

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with Lip $(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 .
$$

Projections in L^{2} are special

Projections in L^{2} are special

$\left.\int_{\pi_{\theta}(E)}\left|\pi_{\theta} \mathcal{H}^{1}\right|_{E}(t)\right|^{2} d t \sim \int_{\pi_{\theta}(E)} \#\left\{\ell_{\bar{⿺}, \theta}^{\perp} \cap E\right\}^{2} d t \sim \int_{E} \#\left\{\ell_{\bar{x}, \theta}^{\perp} \cap E\right\} d x$.

$$
\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{L^{2}}^{2} \quad \sim \int_{E} \#\left\{\ell_{\bar{x}, \theta}^{\perp} \cap E\right\} d x
$$

Projections in L^{2} are special

$$
\int_{G}\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{L^{2}}^{2} d \theta \sim \int_{G} \int_{E} \#\left\{\ell_{x, \theta}^{\perp} \cap E\right\} d x d \theta
$$

Projections in L^{2} are special

$$
\begin{aligned}
\int_{G}\left\|\pi_{\theta} \mathcal{H}^{1} \mid E\right\|_{L^{2}}^{2} d \theta & \sim \int_{G} \int_{E} \#\left\{\ell_{x, \theta}^{\perp} \cap E\right\} d x d \theta \\
& =\int_{E} \int_{G} \#\left\{\ell_{x, \theta}^{\perp} \cap E\right\} d \theta d x
\end{aligned}
$$

Projections in L^{2} are special

$$
\begin{aligned}
& \int_{G}\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{L^{2}}^{2} d \theta \sim \int_{G} \int_{E} \#\left\{\ell_{x, \theta}^{\perp} \cap E\right\} d x d \theta \\
& =\int_{E} \int_{G} \#\left\{\ell_{x, \theta}^{\perp} \cap E\right\} d \theta d x \\
& X(x, G)=\bigcup_{\theta \in G} \ell_{x, \theta}^{\perp} \\
& \sim
\end{aligned}
$$

Projections in L^{2} are special

In fact, one can use Fourier analysis to show:

Theorem (Chang-Tolsa 2020)

Let μ be a finite, compactly supported measure on \mathbb{R}^{2}, and $G \subset \mathbb{S}^{1}$ an open set. Then,

$$
\iint_{0}^{\infty} \frac{\mu(X(x, G, r))}{r} \frac{d r}{r} d \mu(x) \lesssim \int_{G}\left\|\pi_{\theta} \mu\right\|_{L^{2}}^{2} d \theta .
$$

Why is this useful?

Recall: $E \subset \mathbb{R}^{2}$ is a subset of a Lipschitz graph iff there exists an open cone X such that

$$
x \in E \quad \Rightarrow \quad E \cap X(x)=\varnothing
$$

Why is this useful?

In our setting, the estimate

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1
$$

can be used to show that for most $x \in E$

$$
\#\left\{j \in \mathbb{Z}: E \cap X\left(x, G, 2^{-j-1}, 2^{-j}\right) \neq \varnothing\right\} \lesssim 1
$$

Why is this useful?

In our setting, the estimate

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1
$$

can be used to show that for most $x \in E$

$$
\#\left\{j \in \mathbb{Z}: E \cap X\left(x, G, 2^{-j-1}, 2^{-j}\right) \neq \varnothing\right\} \leq M
$$

Why is this useful?

In our setting, the estimate

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1
$$

can be used to show that for most $x \in E$

$$
\#\left\{j \in \mathbb{Z}: E \cap X\left(x, G, 2^{-j-1}, 2^{-j}\right) \neq \varnothing\right\} \leq M-1
$$

Why is this useful?

In our setting, the estimate

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1
$$

can be used to show that for most $x \in E$

$$
\#\left\{j \in \mathbb{Z}: E \cap X\left(X, G, 2^{-j-1}, 2^{-j}\right) \neq \varnothing\right\}=0 .
$$

New result

Sets with projections in L^{∞}

Theorem (D. 2022)

Let $E \subset[0,1]^{2}$ be an Ahlfors regular set with $\mathcal{H}^{1}(E) \sim 1$. Suppose that there exists a measurable $G \subset \mathbb{S}^{1}$ with $\mathcal{H}^{1}(G) \gtrsim 1$ and such that

$$
\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{L \infty} \lesssim 1 \text { for } \theta \in G .
$$

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with $\operatorname{Lip}(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 .
$$

Sets with projections in L^{∞}

Theorem (D. 2022)

Let $E \subset[0,1]^{2}$ be an Ahlfors regular set with $\mathcal{H}^{1}(E) \sim 1$. Suppose that there exists a measurable $G \subset \mathbb{S}^{1}$ with $\mathcal{H}^{1}(G) \gtrsim 1$ and such that

$$
\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{L \infty} \lesssim 1 \text { for } \theta \in G .
$$

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with $\operatorname{Lip}(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 .
$$

Why is this significant?

Conjecture

Let $E \subset[0,1]^{2}$ be an Ahlfors regular set with $\mathcal{H}^{1}(E) \sim 1$ and $\operatorname{Fav}(E) \gtrsim 1$.

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with $\operatorname{Lip}(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 .
$$

Note that $\operatorname{Fav}(E) \gtrsim 1$ if and only if there exists a measurable $G \subset \mathbb{S}^{1}$ with $\mathcal{H}^{1}(G) \gtrsim 1$ such that

$$
\mathcal{H}^{1}\left(\pi_{\theta}(E)\right) \gtrsim 1 \quad \text { for } \theta \in G .
$$

New difficulties

Difficulty 1. We can still get the estimate

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1
$$

but now we cannot transform it to

$$
\left\{j \in \mathbb{Z}: E \cap X\left(x, G, 2^{-j-1}, 2^{-j}\right) \neq \varnothing\right\} \lesssim 1 .
$$

New difficulties

Recall: $E \subset \mathbb{R}^{2}$ is a subset of a Lipschitz graph iff there exists an open cone X such that

$$
x \in E \quad \Rightarrow \quad E \cap X(x)=\varnothing \text {. }
$$

New difficulties

Difficulty 2. We are missing a characterization of Lipschitz graphs in terms of the "irregular, star-shaped" cones.

New difficulties

Difficulty 2. We are missing a characterization of Lipschitz graphs in terms of the "irregular, star-shaped" cones.

Question

Suppose that $E \subset[0,1]^{2}$ is Ahlfors regular with $\mathcal{H}^{1}(E) \sim 1$, and satisfies

$$
x \in E \quad \Rightarrow \quad E \cap X(x, G)=\varnothing
$$

for some $G \subset \mathbb{S}^{1}$ with $\mathcal{H}^{1}(G) \gtrsim 1$.

- Is E rectifiable?
- Is there a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with $\operatorname{Lip}(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 ?
$$

About the proof

Idea of the proof

Theorem (D. 2022)

Let $E \subset[0,1]^{2}$ be an Ahlfors regular set with $\mathcal{H}^{1}(E) \sim 1$. Suppose that there exists a measurable $G \subset \mathbb{S}^{1}$ with $\mathcal{H}^{1}(G) \gtrsim 1$ and such that

$$
\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{L \infty} \lesssim 1 \text { for } \theta \in G .
$$

Then, there exists a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with $\operatorname{Lip}(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 .
$$

Idea of the proof

We know that

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1 .
$$

Idea of the proof

We know that

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1 .
$$

We prove that there exists an $\operatorname{arc} J \subset \mathbb{S}^{1}$ with $\mathcal{H}^{1}(J) \sim 1$ such that

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, J, r))}{r} \frac{d r}{r} d x \lesssim 1 .
$$

Then, we can use the result of Martikainen-Orponen to find the desired big piece of a Lipschitz graph.

Good directions propagate

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1
$$

Good directions propagate

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}\left(E \cap X\left(x, G^{\prime}, r\right)\right)}{r} \frac{d r}{r} d x \lesssim \int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1 .
$$

Good directions propagate

$$
\int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}\left(E \cap X\left(x, G^{\prime}, r\right)\right)}{r} \frac{d r}{r} d x \lesssim \int_{E} \int_{0}^{\infty} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d x \lesssim 1 .
$$

Good directions propagate

Main propositon
Suppose that

- $E \subset[0,1]^{2}$ is an Ahlors regular set with $\mathcal{H}^{1}(E) \sim 1$,

Good directions propagate

Main propositon
Suppose that

- $E \subset[0,1]^{2}$ is an Ahlors regular set with $\mathcal{H}^{1}(E) \sim 1$,
$\cdot J \subset \mathbb{S}^{1}$ is an arc, and $G, \subset J$ is measurable with $\mathcal{H}^{1}\left(J \backslash G_{J}\right) \leq \varepsilon \mathcal{H}^{1}(J)$,

Good directions propagate

Main propositon
Suppose that

- $E \subset[0,1]^{2}$ is an Ahlors regular set with $\mathcal{H}^{1}(E) \sim 1$,
$\cdot J \subset \mathbb{S}^{1}$ is an arc, and $G, \subset J$ is measurable with $\mathcal{H}^{1}\left(J \backslash G_{J}\right) \leq \varepsilon \mathcal{H}^{1}(J)$,
- technical assumptions involving $\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{\infty}$.

Good directions propagate

Main propositon
Suppose that

- $E \subset[0,1]^{2}$ is an Ahlors regular set with $\mathcal{H}^{1}(E) \sim 1$,
$\cdot J \subset \mathbb{S}^{1}$ is an arc, and $G, \subset J$ is measurable with $\mathcal{H}^{1}\left(J \backslash G_{J}\right) \leq \varepsilon \mathcal{H}^{1}(J)$,
- technical assumptions involving $\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{\infty}$.

Then,

$$
\begin{aligned}
& \int_{E} \int_{0}^{1} \frac{\mathcal{H}^{1}(E \cap X(x, 3 J, r))}{r} \frac{d r}{r} d \mathcal{H}^{1}(x) \\
& \lesssim \int_{E} \int_{0}^{1} \frac{\mathcal{H}^{1}(E \cap X(x, G, r))}{r} \frac{d r}{r} d \mathcal{H}^{1}(x)+\mathcal{H}^{1}(J) .
\end{aligned}
$$

Questions

Questions

Can we relax the L^{∞}-assumption to the L^{2}-assumptions?

Question 1

Let $E \subset[0,1]^{2}$ be an Ahlfors regular set with $\mathcal{H}^{1}(E) \sim 1$.
Suppose that there exists a measurable $G \subset \mathbb{S}^{1}$ with
$\mathcal{H}^{1}(G) \gtrsim 1$ and such that

$$
\left\|\left.\pi_{\theta} \mathcal{H}^{1}\right|_{E}\right\|_{L^{2}} \lesssim 1 \quad \text { for } \theta \in G .
$$

Does there exist a Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ with $\operatorname{Lip}(\Gamma) \lesssim 1$ and

$$
\mathcal{H}^{1}(E \cap \Gamma) \gtrsim 1 ?
$$

Questions

Can a similar approach be used to prove the full conjecture?

Question 2

Suppose that $E \subset[0,1]^{2}$ is an Ahflors regular set with $\mathcal{H}^{1}(E)=1$. Does there exist $\varepsilon>0$ and $\delta_{0}>0$ such that, if

- $J \subset \mathbb{S}^{1}$ is an arc with $\mathcal{H}^{1}(J) \leq \delta_{0}$, and $G \mathcal{J} \subset J$ is measurable with $\mathcal{H}^{1}\left(J \backslash G_{J}\right) \leq \varepsilon \mathcal{H}^{1}(J)$,
- for some $\delta_{0}^{-1} \mathcal{H}^{1}(J) \leq C \leq 1$

$$
\mathcal{H}^{1}\left(\pi_{\theta}(E)\right) \geq C \quad \text { for } \theta \in G_{J},
$$

then

$$
\mathcal{H}^{1}\left(\pi_{\theta}(E)\right) \gtrsim c 1 \quad \text { for } \theta \in 3 J ?
$$

Thank you!

